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Reductions of arithmetic, whether to set theory or to a theory formulated in a
higher-order logic, must prove the infinity of the sequence of natural numbers.
In his Was sind und was sollen die Zahlen?, Dedekind attempted, in the notrious
proof of Theorem 66 of that work, to demonstrate the existence of infinite systems
by examining the contents of his own mind. The axioms of General Set Theory, a
simple set theory to which arithmetic can be reduced, are those of Extensionality,
Separation (“Aussonderung”), and Adjunction:
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It is Adjunction that guarantees that there are at least two, and indeed infinitely
many, natural numbers. The authors of Principia Mathematica, after defining zero,
the successor function, and the natural numbers in a way that made it easy to show
that the successor of any natural number exists and is unique, were obliged to as-
sume an axiom of infinity on those occasions on which they needed the proposition
that different natural numbers have different successors.

In §§70-83 of Die Grundlagen der Arithmetik, Frege outlines the derivations of
some familiar laws of the arithmetic of the natural numbers from principles he
takes to be “primitive” truths of a general logical nature. In §§70-81, he explains
how to define zero, the natural numbers, and the successor relation; in §78 he states
that it is to be proved that this relation is one-one and adds that it does not follow
that every natural number has a successor; thus, by the end of §78, the existence,
but not the uniqueness, of the successor remains to be shown. Frege sketches, or
attempts to sketch, such an existence proof in §§82—83, which would complete his
proof that there are infinitely many natural numbers.

§8§82-83 offer severe interpretive difficulties. Reluctantly and hesitantly, we have
come to the conclusion that Frege was at least somewhat confused in these two
sections and that he cannot be said to have outlined, or even to have intended,
any correct proof there. We will discuss two (correct) proofs of the statement
that every natural number has a successor which might be extracted from §§82—
83. The first is quite similar to a proof of this proposition that Frege provides in



Grundgesetze der Arithmetik, differing from it only in notation and other relatively
minor respects. We will argue that fidelity to what Frege wrote in Die Grundlagen
and in Groundgesetze requires us to reject the charitable suggestion that it was this
(beautiful) proof that he had in mind when he wrote Die Grundlagen. The second
proof we discuss conforms to the outline Frege gives in §§82-83 more closely than
does the first. But if it had been the one he had in mind, the proof-sketch in these
two sections would have contained a remarkably large gap that was never filled by
any argument found in Grundgesetze. In any case, it is certain that Frege did not
know of this proof.

We begin by discussing §§70-81.

In §70, Frege begins the definition of equinumerosity by explaining the notion of
a relation, arguing that like (simple) concepts, relational concepts belong to the
province of pure logic. In §71, he defines “the objects falling under F' and G are
correlated with each other by the relation ¢”. Using modern notation, but strictly
following Frege’s wording, we would write:

Va—(FaN—3b(apb N\ Gb)) NVYa—(Ga N —-3b(FbAboa)).

To put the definition slightly more transparently, the objects falling under " and G
are correlated by ¢ iff

Vx(Fx — 3y(Gy Ax¢y)) AVy(Gy — Ix(Fx Axoy)).

In §72, Frege defines what it is for the relation ¢ to be one-one (“beiderseits ein-
deutig”, “single-valued in both directions”): It is for it, as we should say, to be a
function, i.e., VdVaVe(ddpa Ndde — a = e), that is one-one, i.e., VdVaVe(dpa A
bga — d = b). Frege then defines “equinumerous” (“gleichzahlig”): F is equinu-
merous with G iff there is a relation that correlates the objects falling under F

one-one with those falling under G:

Ao [Vx(Fx — Jy(Gy Ax¢y)) AVy(Gy — Ix(Fx Axdy))A
VdvaVe(dpaNdpe — a =e) N\VdVaVe(dpa Nbpa — d =b)].

‘We abbreviate this formula: F ~ G.

At the end of §72, Frege defines the number that belongs to F as the extension of
the concept “equinumerous with the concept F°. He also defines “n is a (cardinal)
number”: there is a concept F such that n is the number that belongs to F. His
next task, attempted in §73, is to prove a principle that Crispin Wright (1983) once
called N~ (for numerical equality), Michael Dummett (1991) calls “the original



equivalence”, and we call “HP”: the number belonging to F is identical with that
belonging to G iff F is equinumerous with G.

The trouble with the definition of number given in §72 and the proof of HP given in
§73 is that they implicitly appeal! to an inconsistent theory of extensions of second-
level concepts. Russell of course demonstrated the inconsistency of Frege’s theory,
presented in Grundgesetze der Arithmetik, of extensions of first-level concepts; a
routine jacking-up of Russell’s argument shows that of the theory Frege tacitly
appeals to in Die Grundlagen.”> Tt is by now well-known, however, that Frege
Arithmetic, i.e., the result of adjoining a suitable formalization of HP to axiomatic
second-order logic, is consistent if second-order arithmetic is, and is strong enough
to imply second-order arithmetic (as of course Frege can be seen as attempting to
prove in Die Grundlagen). Indeed, Frege Arithmetic and second-order arithmetic
are equi-interpretable; in Appendix 2, we should how to interpret Frege Arithmetic
in second-order arithmetic.

Writing: #F to mean: the number belonging to the concept F', we may symbolize
HP: #F =#G = F = G.

The development of arithmetic sketched in §§74—81 makes use only of Frege Arith-
metic and can thus be reconstructed in a consistent theory (or one we believe to be
so!). Nothing will be lost and much gained if we henceforth suppose that Frege’s
background theory is Frege Arithmetic.

In §74, Frege defines 0 as the number belonging to the concept “not identical with
itself”: 0 = #[x : x # x]. ([x:...x...]is the concept being an object x such that
...x....) Frege notes that it can be shown on logical grounds that nothing falls
under [x : x # x]. In §75, he states that Vx(—Fx) — [Vx(Gx) = F ~ G] has to be
proved, from which Vx(—Fx) = 0 = #[x : Fx| follows. These have easy proofs.
Frege outlines that of the former in detail.

§76 contains the definition of “n follows immediately after m in the ‘natiirliche

Zalenreihe’”:
AF3x (FxA#F =n/A\#]y: FyAy # x| =m)

It is advisable, we think, to regard the relation so defined in this section as going

! The appeal is made when Frege writes “In other words:” at the end of the second paragraph of
§73.

21et (V) be vag(f =4 = VX(ZX =¥9X)). Then (V) is inconsistent (in third-order logic).
For let .7 be [X : V. (Vx(Xx = x = /) — —~X)] and let X be [x : x = .%]. Suppose .ZX. Then
VA (Yx(Xx = x = ) — —X). SoVx(Xx=x=.%) — ~.FX, whence ~.ZX by the definition
of X. Thus —.ZX. So for some 57, Vx(Xx = x = /) and X, and then X (%) =.% = . By the
definition of X again, F=9=F%=:, %=, and by (V), VX(F#X = X)), contra ~.%#X and
AX. (We use “*’ to mean “the extension of” and “[: ...]” to denote concepts (of whatever level).)



from m to n, despite the order of ‘n’ and ‘m’ in both the definiens and the definien-
dum of “a immediately follows m in the natural seris of numbers”. We shall thus
symbolize this relation: mPn (‘P’ for “(immediately) precedes”).

Call a concept Dedekind infinite if it is equinumerous with a proper subconcept of
itself; equivalently, if it has a subconcept equinumerous with the concept being a
natural number. With the aid of the equivalence of these definitions of Dedekind
infinity, it is not difficult to see that nPn if and only if # is the number belonging
to a Dedekind infinite concept. Thus the number of finite numbers, which Frege
designates roughly: oo,3 but which we shall as usual denote: X, follows itself
in the “natiirliche Zahlenreihe”, in symbols: ¥yPX,. Since X is not a finite,
i.e., natural, number, we shall translate “in der natiirliche Zahlenreihe” as “in the

natural sequence of numbers”.*

§77 contains the definition of 1, as #[x : x = 0], and a proof that OP1. In §78, Frege
lists a number of propositions to be proved:

1. OPa —a=1;
2. 1 =#f — x(Fx);
3. 1 =#F — (FxAFy —x=y);

4. Ix(Fx) A\VaVy(FxANFy — x=y) — | = #F;

/

5. P is one-one (“beiderseits eindeutig”), i.e., mPn Am'Pn’ — (m =m
ANR]

n=

3 This is not quite the symbol Frege uses, which looks like a very open omega with a frown across
the top.

4 Timothy Smiley (1988) observed that “in the nautral series of numbers” is to be preferred as a
translation of “in der natiirliche Zahlenreihe” to Austin’s “in the series of natural numbers”. We have
substitutes “sequence” for “series” throughout.

5 Frege does not indicate what proof of 78.5 he might have intended. Here is an obvious one that
he might have had in mind.

Suppose mPn and m'Pr’. Then for some F,F’ x,x', Fx, F'x', #F = n, #F' =n/, #[y: FyAy # x| =
m,and #[y : F'y Ny #X| =m'.

Assume m = m’. Then by HP, there is a one-one correspondence ¢ between the objects y such that
Fy and y # x and the objects y' such that F'y’ and y' # x’. We may assume that if y¢y’, then Fy,
y#x, F'y,andy # x'. Let yyy iff (y¢y'V [y =x Ay =x']). Then y is a one-one correspondence
between the objects falling under F and those falling under F’, and so by HP, n = #'.

Assume n = n’. By HP, let ¥ be a one-one correspondence between the obejcts falling under F
and those falling under F’. We may assume that if y¢y’, then Fy, and F'y'. Let y¢y' iff (Fy Ay #
XAF'Y Ny #X Nywy V (ywx’ Axyy')]). Then v is a one-one correspondence between the objects
y such that Fy and y # x and the objects y' such that F'y’ and y' # x/, and so by HP, m = m'.



Frege observes that it has not yet been stated that every number immediately fol-
lows or is followed by another. He then states:

6. Every number except 0 immediately follows a number in the natural se-
quence of numbers.

It is clear from §44 of Grundgesetze® that Frege did not take (6) to imply that 0 does
not immediately follow a number, that —xP0. This proposition is proved separately
in Grundgesetze, as Theorem 108, and will be used later on here, at a key point in
the argument.

§79 contains the definition of the strong ancestral of ¢, “x precedes y in the ¢-
sequence” or y follows x in the ¢-sequence”:

VF (VYa(x¢pa — Fa) — VdVa(Fd — dpa — Fa) — Fy)

which was Definition (76) of the Begriffsschrift. Frege will use this definition in
§81 to define “member of the natural sequence of numbers ending with n””. We shall
use the standard abbreviation: x¢*y for the strong ancestral. To prove that if x¢*y,
then ...y..., it suffices, by the comprehension scheme 3FVa(Fa = ...a...) of
second-order logic, to show that Va(x¢a — ...a...) and VdVa(...d--- — dpa —

..a...). We call this method of proof Induction 1. (Induction 2 and Induction 3
will be defined below.)

Here and below, we associate iterated conditionals to the right. Thus, e.g., “A —
B — C” abbreviates “(A — (B — C))”. This convention provides an easy way to
reproduce in a linear symbolism one major notational device of both Begriffsschrift
and Grundgesetze.

Frege mentions in §80 that it can be deduced from the definition of “follows” that
if b follows a in the ¢-sequence and c follows b, then ¢ follows a; the transitivity
of the strong ancestral is Proposition (98) of the Begriffsschrift. The proof Frege
gives there can be formalized in second-order logic only wiht the aid of the com-
prehension schema (or something to the same effect); however, there is an easier
proof that makes uses only of the ordinary quantifier rules, applied to the universal
quantifier in the definition of ¢* (Boolos, 1998, pp. 158-9). For the proof in §§82—
83, Frege will also need Propsition (95) of Begriffsschrift: if x¢y, then x¢*y, which
easily follows from the definition of ¢*.

At the very end of §80 Frege states that only by means of the definition of follow-
ing in a sequence is it possible to reduce the method of inference (“Schlussweise”,

6 All reference to sections of Grundgesetze are to Volume 1.



which Austin mistranslates as “argument”) from n to n+ 1 to the general laws of
logic. Of course, the method of inference from n to n+ 1 is what we call mathe-
matical induction; Frege’s remarks may be taken to be a claim that mathematical
induction can be proved with the aid of the definition of the ancestral of P.

In §81, Frege defines the weak ancestral: “y is a member of the ¢-sequence begin-
ning with x” and “x is a member of the ¢-sequence ending with y” are to mean:
x¢yVy =x. We shall use the abbreviation: x¢*~y. He states at the beginning
of the section that if ¢ is P, then he will use the term “natural sequence of num-
bers” instead of “P-sequence”. We thus have five terms: “y follows x in the natural
sequence of numbers”, “x precedes y...”, “y immediately follows x...”, “x is a
member of the natural sequence of numbers ending with y”, and “y is a mem-
ber...beginning with x”. We shall abbreviate these as: xP*y, xP*y, xPy, xP*~y,

and xP*~y, respectively.

Induction 2 is the following method of proof, in which weak ancestrals occur as
hypotheses: To prove that if x¢*~y, then ...y..., it suffices to prove:

1 ...x...
(ii) VdVa(...d---—dpa— ...a...).

Induction 2 follows quickly from Induction 1: If (i) and (ii) hold, then so does
Va(x¢a — ...a...); thus, if x¢*y, then ...y..., by Induction 1. But if x =y, then
by (i), ...y... again. Frege proves Induction 2 as Theorem 144 of Grundgesetze.

A basic fact about the weak ancestral, to which we shall repeatedly appeal, is
that x¢*a and thus x¢*~a, provided that x¢*~d and d¢a, fo rthem either x¢*d¢a,
x¢*d¢*a, and x¢*a, or x = dda, x¢a, and x¢*a, by (95) and (98) of Begriffsschrift.
That x¢*a if x¢*~d and d¢a is Theorem 134 of Grundgesetze der Arithmetik; that
x¢*~a if x¢*a is Theorem 136.

Frege has not yet defined finite, or natural, number. He will do so only at the end
of §83, where “n is a finite number” is defined as “n is a member of the natural
sequence of numbers beginning with 07, i.e., as: 0P*~n. By Induction 2, to prove
that ...n... if n is finite, it suffices to prove ...0... and VdVa(...d--- — dPa —

sa...).

In the formalism in which we are supposing Frege to be working the existence and
uniqueness of 0, defined in §74 as #[x : x # x|, are given by the comprehension
scheme for second-order logic and the standard convention of logic that function
signs denote total functions. Thus # denotes a total function from second-order
to first-order entities and the existence of #[x : x = x|, that of #[x : x # x], and that



of #[x:x=#[x:x# x]] will count as truths of logic. The propositions that 0 is
a natural number and that any successor of a natural number is a natural num-
ber follow immediately from the definition of “natural number”; 78.5 says that P
is functional and one-one. So apart from the easily demonstrated statement that
nothing precedes zero, by the end of §81 Frege can be taken to have established
the Dedekind-Peano axioms for the natural numbers, except for the statement that
every natural number has a successor.

Using the notation we have introduced, we may condense §§82-83 as follows:§82.
It is now to be shown that—subject to a condition still to be specified—

(0) P(n,Nx: P*~xn)

And in thus proving that there exists a Number that follows in the series of natural
numbers directly after n, we shall have proved at the same time that there is no
last member of this series. Obviously, this proposition cannot be established on
empirical lines or by [enumerative] induction.

§82. It is now to be shown that—subject to a condition still to be
specified—(0) nP#[x : xP*~n]. And in thus proving that there exists
a Number k such that nPk, we shall have proved at the same time that
there is no last member of the natural sequence. . ..

... Itis to be proved that (1) dPa A dP#[x : xP*=d| — aP#[x : xP*~al).

It is then to be proved, secondly, that (2) OP#x[xP*=0]. And finally,
it is to be deduced that (0') OP*=n — nP#x : xP*~n. The method of
inference (“Schlussweise”) here is an application of the definition of
the expression “y follows x in the natural sequence of numbers”, taking
[the strong ancestral], taking #[y : yP#[x : xP*=y]] for our concept F.’

§83. In order to prove (1), we must show that (3) a = #[x : xP*al.
And for this again it is necessary to prove that (4*) [x : xP*~a A x # d]
has the same extension as [x : xP*=d]. For this we need the proposition
(5") Va(0P*=a — —aPa). And this must once again be proved by mean
of our definition of following in a sequence, along the lines indicated
above.

7 This sentence seems to throw Austin. But we take its last half to mean: when one takes for the
concept F' what is common to the statements about d and about a, about 0 and about n, and thus that
the concept in question is #[y : yP#[x : xP*=y]]. Austin’s translation makes it sound as if some binary
relation holding between d and a and also between 0 and n were meant. However good his German
and English may have been, Austin was no logician. It is time for a reliable English translation of
Die Grundlagen.



We are obliged hereby to attach a condition to the proposition that
nP#[x : xP*~n], the condition that 0P*=n. For this there is a conve-
nient abbreviation. .. : n is a finite number. We can thus formulate (5')
as follows: no finite number follows itself in the natural sequence of
numbers.

(We have added some reference numbers; (1) is Frege’s own. Primes indicate the
presence of a finiteness condition in the antecedent; the asterisk in (4*) indicates
(what at least appears to be) a reference to extensions.)

It might appear that Frege proposes in these two sections to prove, not (0), but (0'),
as follows: First, prove (5') by an appeal to the definition of P*. Then derive (4*)
from (5’) and (3) from (4*). From (3) derive (1). Prove (2). Then, finally, infer
(0") from (2) and (1), by a similar appeal to the definition of P*.

However, it will turn out that this precise strategy cannot succeed. It cannot be
(4*) and (3) that Frege wishes to derive—(3), e.g., is false if a = X, as we shall
see—but certain conditionals (4') and (3’), whose consequents are (4*) (or rather
an equivalent of it) and (3).

We do not, of course, know how Frege might have tried to fill in the details of this
proof-sketch at the time of composition of Die Grundlagen. In particular, we do
not know exactly how he would have proved (5"). (We can be reasonably certain
that his proof of (2), however, would have been at least roughly like the proof we
shall give below.) But, since he later proved a version of the following lemma as
Theorem 141 of Grundgesetze, it seems plausible to us to speculate that he might
have intended to appeal to something rather like it in his proof of (5’). The lemma
is a logicized version of the arithmetical truth: if i < k, then for some j, j+1 =k
and i < j.

Lemma. xP*=y — Jz(zPy AxP*z)
Proof. Let Fa = 3z(zPa AxP*~z). Then xPa — Fa, for if xPa, then certainly Fa:
take z = x. And Fd AdPa — Fa: Suppose Fd and dPa. Then for some z, zPd and

xP*=z. By the basic fact about the weak ancestral, xP*~d. But since dPa, Fa. The
lemma follows by Induction 1. O

With the aid of the lemma, we can now use Induction 2 to prove (5):

Proof. 0 =#[x:x# x|. By HP and the definition of P, Vz(—zP0), and therefore, by
the lemma, =0P*0.



Now suppose dPa and aP*a. Then by the lemma, for some z, zPa and aP*~z, i.e.,
either aP*z or a = z, and therefore either zPaP*z or zPa = z. In either case, zP*z.
Since dPa and zPa, z = d by 78.5, and so dP*d. Thus, ~dP*d N dPa — —aP*a.

(5") now follows by Induction 2. O

(5") merits a digression. The part of Die Grundlagen der Arithmetik entitles “Our
definition completed and its worth proved” begins with §70 and ends with §83;
the concluding sentence of §83 reads: “We can thus formulate the last proposition
above as follows: No finite number follows itself in the natural sequence of num-
bers.” Apart from its position in the book and the fact that Frege mentions it in
both the table of contents and the recapitulation of the book’s argument at the end
of Die Grundlagen, there are a number of reasons for thinking that Frege regarded
this proposition as especially significant..

First, there is, according to Frege, and interesting connection with counting. When
we count, he points out in §108 of Grundgesetze, we correlate the objects falling
under a concept ®(&) with the number words in their normal order from “one” up
to a certain one, “N”; N is then the number of objects falling under ®(£). Since
correlating relations between concepts are not in general unique,

the question arises whether one might arrive at a different number
word ‘M’ with a different choice of this relation. By our stipluations,
M would then be the same number as N, but at the same time one of
the two number words would follow after the other, e.g., ‘N’ after ‘M’.
Then N would follow in the sequence of numbers after M, i.e., after
itself. Our Proposition [(5")] excludes this for finite numbers.

We find this argument of considerable interest, but will not enter into a discussion
of its correctness here.

Second, one of Frege’s major philosophical aims, as is well known, was to show
that reasons, under the aspect of logic, could yield conclusions for which many
philosophers of his day might have supposed some sort of Kantian intuition to be
necessary. The proof of (5) is a paradigm illustration of how the role of intuition
in delivering knowledge can be played by logic instead.

One might think that the truth of (5") could be seen by the following sort of mixture
of reason and intuition: (5") says that there is no (non-null) loop of P-steps leading
from a back to a whenver a is a finite number. So if a is finite but not zero and
there is a loop from a to a, then within the loop, there is some number x that
(immediately) precedes a, and therefore there is a loop from x (through a, back)



to x. But since « is finite, there is a finite sequence of P-steps from zero to some
number d preceding a; since precedes is one-one, d = x, and therefore there is a
loop from d to d. Thus a loop “rolls back” from a to d, and then all the way back
to zero. But there is no loop from zero to zero; otherwise, some number would
precede zero, and that is impossible.

Of course, Frege’s proof of Theorem 145 avoids any appeals to intuition like those
found in the foregoing argument.

Finally, in the proof of Theorem 263 of Grundgesetze, Frege shows that any struc-
ture satisfying a certain set of four conditions is isomorphic to that of the natural
numbers. We find it quite plausible to think that Frege realized that the statement
that the natural numbers satisfy these conditions constitutes an axiomatization of
them and regarded them as the basic laws of arithmetic.® Since one of these condi-
tions is the one (5’) shows to be satisfied, there is considerable reason to think that
Frege regarded (5') as one of the basic laws of arithmetic.

End of digression.

(4*) at least appears to mention extensions of (first-level) concepts and may well
do so. But (4%*) is unlike the definition of cardinal number and proof of HP in
that any mention of extensions it contains is readily eliminable without loss: Frege
could have written to exactly the same point, “a member of the natural sequence
of numbers ending with a, but not identical with a, is a member of the natural
sequence of numbers ending with d, and vice versa”.

It is evident that Frege cannot be proposing to derive (4*) or the equivalent
4) Vx([xP*=aAx # a] = xP*=d)

from (5') since both (4*) and (4) contain free occurrences of ‘d’. Since the suppo-
sition of §82 that dPa is still clearly in force, it might be thought that Frege wishes
to derive

(47) dPa — Yx([xP*=aN\x # a) = xP*=d)

from (5').

However, if d = a = X, then, as we have observed, dPa; and then, since aP*=a,
(47) has a true antecedent and fals consequent. Thus it cannot be (47) that Frege is
proposing to derive from (5').

We may note, though, that Vx ([xP*=a A x # a] = xP*=d) can be derived from dPa
and —aP*a. So we may take it that Frege is proposing to derive

8 For elaboration of this suggestion, see Heck (1995).
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4" 0P*=a — dPa — Vx ([xP*=aAx # a] = xP*=d)
from (5').

Proof. Suppose 0P*a and dPa. Assume xP*~a Ax # a. Then xP*a. By the lemma,
for some ¢, cPa and xP*~¢. By 78.5, ¢ =d. Thus, xP*~d. Conversely, assume
xP*=d. Since dPa, xP*a, by the basic fact about the weak ancestral, and so xP*~a.
If —aP*a, then also x # a. But since 0P*=aq, it follows from (5’) that indeed —~aP*a.
Thus (4') is proved. O

Nor could Frege be proposing to derive (3) a = #[x : xP*~a A x # a] from any
proposition he takes himself to have demonstrated. For (3) is false if ‘a’ has ¥
as value. In fact, #[x : xP*= X Ax # Xo|] = 0. For if xPXy, then since XoP Xy,
x = Xy, by 78.5. Let S be the converse of P. Then if X¢Sx, x = ¥y. Thus if
NoS*x, x = NXy. (Let Fa = a = X in the definition of S*.) But the ancestral is the
converse of the ancestral of the converse. So if xP* Xg,then x = ¥. Thus xP*= X
iff x = X, and therefore for no x, xP*~ Xy Ax # Xo. By a proposition given in
§75, #[x : xP*= Ny Ax # Xo] =0.

However, it is important to observe that at this point it is not only the conjunct
dPa of the antecedent of (1) that is assumed to be in force; the other conjunct
dP#|x : xP*=d|] is also assumed to hold. (It is easy to oblivious to this further
assumption since (3) does not mention d. But it is supposed at this point that a is
such that dPa, and it is likely also supposed that d is such that dP#[x : xP*=d].)
Since (3) follows from these two conjuncts and the consequent of (4'), we may
take it that Frege wishes to prove:

(3" O0P*=a — dPa — dP#[x : xP*=d| — a =#[x : xP*~a \x # 4

Proof. Suppose dPa and dP#[x : xP*=d]. Then by 78.5 (the other way), a = #[x :
xP*=d|]. Suppose further that 0P*=a. Then by (4'), Vx ([xP*=a Ax # a] = xP*=d).
By HP, #[x : xP*~a Ax # a] = #[x : xP*=d|]. Thus a = #[x : xP*~a Ax # a]. O

We come now to the difficult question how Frege proposes to derive (1) from (3').
Frege tells us that to prove (1), we must show (3). But (3) is not unconditionally
true. However, (3'), whose consequent is (3) and whose antecedent contains a
conjunct stating that the value of ‘a’ satisfies the condition of finiteness, can be
proved. Thus it might seem reasonable to think that Frege may be proposing, as
in the case of (4) and (3), not to derive (1) from (3), but some conditional whose
antecedent expresses a finiteness condition and whose consequent is (1). Moreover,
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since dPa is one of the clauses of the antecedent, it we take OP*~d as another
conjunct of the antecedent, we need not also take OP*~a. So we have

(1) 0P*=d — dPa — dP#[x : xP*~d] — aP#[x : xP*~d]
(1) readily follows from (3').

Proof. Suppose that 0P*=d, dPa, and dP#|x : xP*=d]. By the basic fact about the
weak ancestral, 0P*=a. By (3'), a = #[x : xP*~a Ax # a]. Since a = a, aP*=a. By
the definition of P, #[x : xP*~a Ax # a| P#|x : xP*=a|. Thus aP#[x : xP*=a]. [

It may be useful to recapitulate here our (somewhat intricate) derivation of (1)
from (5") and the other propositions to which Frege appeals.

Proof. Suppose 0P*=d, dPa, and dP#[x : xP*=d]. By the basic fact about the weak
ancestral, 0P*=a, and thus by (5'), —aP*a. If xP*~a A\ x # a, then sP*a, and so by
the lemma, for some z, xP*~z and zPa. By one half of 78.5, z = d, and so xP*~d,
conversely, if xP*=d, then by the basic fact, xP*a, whence x # a (since —aP*a)
and xP*=a. Thus Vx ([xP*~a Ax # a] = xP*=d), which is (4), and so by HP #[x :
xP*=a A x # a] = #]x : xP*=d], and therefore dP#|x : xP*=a N\ x # a]. By the other
half of 78.5, a = #[x : xP*~a A x # a], which is (3). Since aP*~a (trivially), by the
definition of P, #[x : xP*=a Ax # a] P#[x : xP*~a], and therefore aP#[x : xP*=a]. [

(2) is proved much more easily.
(2) OP#[x : xP*=0]

Proof. 0 =#[x : x # x]. By HP and the definition of P, ¥z(—zP0). By the lemma,
Vx(—xP*0), and so Vx—=(xP*=0Ax # 0). By a result of §75 mentioned above,
#x: xP*=0Ax # 0] = 0. But 0P*=0, whence #[x : xP*=0 Ax # O] P#[x : xP*=0],
and therefore OP#[x : xP*=0). O

(0") must now be derived from (1”) and (2). It is not possible to appeal to Induction
2 because of the presence of ‘OP*=d’ in the antecedent of (1’). But, it might be
supposed, Frege can appeal here to Induction 3, which he explicitly demonstrated
in Grundgesetze as Theorem 152: To prove that if x¢*~y, then ...y..., it suffices
to prove:

{1 ...x...
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(i) VdVa(x¢*=d — ...d--- —dpa— ...a...).

Note the formula x¢*~d, whose presence weakens (ii) and thereby strengthens
the method. The derivation of Induction 3 from Induction 2 is significantly more
interesting than that of Induction 2 from Induction 1. It appeals to the comprehen-
sion scheme of second-order logic and uses a technique sometimes called “load-
ing the inductive hypothesis”. (At the beginning of §116 of Grundgesetze, Frege
writes, “To prove proposition (y) of §114, we replace the function mark ‘F (&)’
with ‘=(aP*~x — =F(&))’”)

Proof of Induction 3. Suppose x¢*~y and, moreover, (i) and (ii). Let Ga=...a---A
x¢*~a (second-order comprehension). Now, x¢*~x trivially; thus by (i), Gx. We
now show VdVa(Gd — ddpa — Ga): Suppose dpa and Gd, i.e., ...d... and x¢*=d.
By (ii), ...a.... By the basic fact about the weak ancestral, x¢*~a. Thus, VdVa(Gd —
d¢a — Ga). By Induction 2, Gy, whence ...y.... O

We believe that no one will seriously dispute that this proof of (0'), which features
a derivation of (1”) from (5’) and an appeal to Induction 3, is Fregean in spirit,
ingenious, and of a structure that fits the proof-sketch found in §§82-83 rather
well. But there are a number of strong reasons for doubting that Frege had this
proof in mind while writing these two sections. Accordingly, we shall refer to it as
the conjectural proof.’

First of all, Frege twice says that (1) is to be proved, once in §82 and again in
§83. He says, moreover, “The method of inference here is an application of the
definition of the expression ‘y follows x in the natural sequence of numbers’, taking
[y : yP#|x : xP*=y]] for our concept F”. It would thus seem natural to take Frege
as arguing by appeal to Induction 1 or Induction 2 (with P as ¢). Frege mentions
the condition that n be finite, but does not also mention, as he might easily have
done, the need to assume that d (or a) is finite as well. Thus it would seem overly
charitable to assume that the argument he really intended proceeds via Induction 3.

Second, notice that Frege says in §83 that (5’), which he proves in Grundgesetze by
appeal to Induction 2, “must likewise (‘ebenfalls’) be proved by means of our def-
inition of following in a series, as indicated above”. It seems plain that Frege does
not intend to use Induction 3 to prove (5'); “ebenfalls” suggests that the induction
used to prove (0') would be like the one used for (5').

The most telling objections to the suggestion that Frege was intending to sketch
the conjectural proof in Die Grundlagen, however, arise from a close reading of

9 Of course, what is conjectural is whether the proof is Frege’s not whether it is a (correct) proof.
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Section H (Eta) of Part II of Grundgesetze. WE quote and comment upon part of
Section H.!°

H. Proof of the Proposition

OP*~b — bP#[x : xP*" D]

§114. Analysis

We wish to prove the proposition that the Number that belongs to the
concept

member of the number-series ending with b

follows after b in the number-series if b is a finite number. Herewith,
the conclusion that the number-series is infinite follows at once; i.e., it
follows at once that there is, for each finite number, one immediately
following after it.

We first attempt to carry out the proof with the aid of Theorem (144)
[viz., ag"=b — Vd(Fd — Va(dqa — Fa) — (Fa — Fb)], replacing
the function-mark ‘F&’ with ‘EP#[x : xP*=&]’. For this we need the
proposition ‘dP#[x : xP*=d] — dPa — aP#[x : xP*=a] .

That is to say, one’s “first” idea might be to prove (0') by applying Induction 2 to
the concept [y : yP#[x : xP*~y]], which would, among other things, require a proof
of (1). (A footnote, to which we shall return, is attached to this last sentence.)

Substituting. ..in (102) [viz., #[x : Fx Ax # b| = ¢ — Fb — cP#F]],
... we thus obtain

#ix: P xaAx £ a] =anaPTa— a = #x: P,

from which we can remove the subcomponent ‘aP*~a’ by means of
(140) [viz., aP*~a]. The question arises whether the subcomponent
“#[x:xP*=a/Ax# a] = a’ can be established as a consequence of ‘dPa’
and ‘dP#[x : P*=xd| .

Put differently, the problem reduces to that of proving

10 The present translation is based upon one due to Richard Heck and Jason Stanley. We have
changed Frege’s notation to ours and added some material in brackets.
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(37) dPa — dP#[x: xP*=d| — a = #[x : xP*~a N x # d]

which is (3’) without the finiteness condition 0P*~a, and which, together with the
relevant instance of Frege’s Theorem 102, implies (1).

By the functionality of progression in the number-series. .., we have
dP#[x: P""xd) NdPa — a = #[x : P*"xd]
... We thus attempt to determine whether
#x:xP""aNx # a] =#[x: xP*d]

can be shown to be a consequence of ‘dPa’. ...For this it is necessary
to establish
[bP*=aNb #al =DbP*~d

as a conseqence of ‘dPa’....
That is, (31) will follow from
(4%) dPa — Vx([xP*=aAx # a] = xP*=d),
an easy consequence of HP, and the one-one-ness of P.

For this it is necessary to establish
bP*=aNb+#a— bP*d
and
bP*=d — bP*"aAb#a

as consequences of ‘dPa’. But it turns out that another condition must
be added if ‘b # a’ is to be shown to be a consequence of ‘bPd’ and
‘dPa’. By (134) we have

bP*~d NdPa — bP*a

If b coincided with a, then the main component [consequent] would
transform into ‘aP*a’. By (145) [our (5')], this is impossible if a is a
finite number. Thus the subcompent ‘OP*=a’ is also added.

Admittedly, the desired application of (144) thereby becomes impos-
sible; but, with (137) [viz., ag*~e — eqm — aq*~m], we can replace
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this subcomponent with ‘OP*~d’ and derive from (144) the Proposi-
tion [(152)]

(ag""b —Vd(Fd — aq*~d — Va(dga — Fa))) — (Fa — Fd)

which takes us to our goal.

That is, to establish the first half of (4'), we need to know that —aP*a; this will
follow from (5) and the additional assumption that a is finite. However, this new
assumption must then be carried along throughout the proof, transforming (4+) into
(4), (31) into (3'), and (1) into ‘OP*=a — dP#[x: xP*=d] — dPa — aP#[x : xP*=a],
from which (1’) easily follows. The attempt to prove (0') via Induction (2) then
fails, since we simply have not proved (1), though we can still complete the proof
by making use of Induction 3 instead.

It is, we think, difficult to read these passages without supposing that they reveal
Frege’s second thoughts about his idea in Die Grundlagen of applying Induction
2 to prove 0P*~n — nP#[x : xP*~n| by substituting [y : yP#[x : xP*~y]] for F. The
attempt won’t work, he says, because we need the hypothesis that a is finite in
order to derive —aP*a, which is needed for bP*=d — dPa — b # a, which is in
turn necessary for the rest of the proof. Read side by side with §§82-83 of Die
Grundlagen, Frege’s discussion in these paragraphs strikes us as penetrating and
direct criticism of his earlier work. Moreover, the criticism suggests a way in which
the conjectural proof can be regarded as Frege’s after all: it is the proof obtained
on amending the proof-sketch of §§82-83 in the way suggested in this section of
Grundgesetze.

It is striking that the formal proof Frege actually gives in Grundgesetze, though
closely related to the conjectural proof, is not quite the same proof. The formal
proof,!! given in §§115, 117, and 119, does proceed by deriving (0') by means of
Induction 3 (Frege’s Proposition 152), from (1’), which is (150¢),'? and (2), which
is (154). And the proof of (1’) does begin with a derivation of (4'), which is 149¢,
from (5"), which is (145). But (1’) is not derived from (4’) via (3'); the argument
is slightly different.

This part of the Grundgesetze proof, translated into English plus our notation, runs
as follows. By the basic fact about the weak ancestral it suffices to show that
if 0P*=a, dPa, and dP#[x : xP*=d], then aP#[x : xP*=a]. By (4') and (an easy

11 For a fuller account, see Heck (1993).
12 By proposition nx we mean the proposition labeled with Greek letter x that occurs during, as
opposed to after, the proof of proposition number 7.
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consequence of) HP, we have that #[x : xP*=a A x # a] = #[x : xP*=d] (cf. 149). But
substituting into Proposition (102) quoted above, we have

#lx:xP*"aAx # a] =#[x: xP""d] — aP""a — #[x : xP""d] P#[x : xP""d].

Hence, by (140), #[x : xP*=d| P#[x : xP*=a] (cf. 150p). Since dPa and dP#x :
xP*=d], a = #[x : xP*=d| (cf. 1507), whence aP#[x : xP*=a] (cf. 1508) and we are
done.

Comparing this argument with the relevant portion of the conjectural proof, one
sees immediately how little they differ from each other; one might therefore over-
look (or ignore) the fact that (3") does not actually appear in the proof given in
Grundgesetze. But the omission of (3') is significant, since the “proof” discussed
in §114 explicitly highlight (31) as what must be proved if (1) is to be derived
from (47). The typical point of a section of Grundgesetze headed “Analysis” is
to describe a formal proof found in “Construction” sections that follow it. Thus
on reading §114, one would naturally expect the following proof to include, not
just proofs of the results of adding a finiteness condition to (41) and to (1), but
also, as part of the derivation of the latter from the former, a proof of a proposition
similarly related to (3t). As we said, however, the derivation of (1’) from (4’) in
§115 does not go via (3'). That (3t) is so much as mentioned in §114 is therefore
bound to seem mysterious unless one reads it as we have suggested: as criticism of
Frege’s own “first attempt” to prove (0') in §§82-83 of Die Grundlagen, for (37)
or (3’) is indeed an intermediate step in that proof.

This observation concerning how the Grundgesetze proof differs from the conjec-
tural proof also suggests a plausible explanation of the original of the mistake of
which we have accused Frege. Consider the two lists of propositions in Table 1 on
page 18. As we have seen, (4) follows from (5), (3') from (4’), and (1’) from (3').
But notice also that (4) follows from (51), (31) from (47), and (1) from (37), as
obvious modifications of our proofs show. Frege, able to prove (5') and desirous of
proving (1), may well have lost sight of the need for a finiteness condition some-
where in the middle of his argument—perhaps he had not yet fully written out the
argument in his conceptual notation—and mistakenly concluded that he could de-
duce (1) from (5'). If forced to guess, we would suppose that it was between (4)
and (1), i.e., at (37) or (3’), that the finiteness condition vanished, for it is there
that the Grundgesetze proof differs from the conjectural proof.

The first sentence of the second paragraph of §83 calls for some discussion. Frege
writes there that we are obliged “hereby” (“hierdurch”) to attach to the proposition
that nP#[x : xP*~n]| the condition that 0P*=n. One might be forgiven for thinking
that, in so stating, Frege is indicating that this condition is required by the presence
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(1) 0P*=d — dPa — dP#[x : xP*=d| — aP#|x : xP*=a|

(3" 0P*=a — dPa — dP#[x : xP*=d] — a = #[x : xP*~a A\ x # 4]
4" 0P*=a — dPa — Vx([xP*=aNx # a] = xP*=d)

(5" 0P*=a — —aP*a

(1) dPa — dP#[x : xP*=d] — aP#[x : xP*=a]

(3F) dPa — dP#[x: xP*=d| — a =#[x : xP*~a \x # d]

4%) dPa — Vx ([xP*=aN\x # a] = xP*=d)

(57) —aP*a

Tab. 1: The Origin of Frege’s Mistake

of the finiteness condition in (5’), since it is with an indication of how (5’) is to be
proven that the previous paragraph ends. But this thought cannot be right. Frege
says in §82 that, once (1) and (2) are proved, “it is to be deduced that 0P*"n —
nP#[x : xP*~n]” by means of Induction 2. Thus what subjects # in (0) to a finiteness
condition is not the presence of such a condition in (5"), but the kind of proof (0/)
being given in the first place. “Hierdurch” refers to the use in the proof of (0') of
the “definition of following in a series, on the lines indicated above”, that is, as was
discussed in §82.

There is one final piece of textual evidence to which we should like to draw atten-
tion. As we said earlier, a footnote is attached to (1) when it is first mentioned in
§114: “This proposition is, as it seems, unprovable, but it is not here being asserted
as true, since it stands in quotation marks”. The natural explanation for this remark
of Frege’s is that he once did believe (1) to be provable, namely when he wrote Die
Grundlagen, and any defender of the view that Frege was outlining the conjectural
proof in §§82-83 will have the occurrence of this remark to explain away.

Apart from the light it may throw on the question whether Frege made a repara-
ble error, the footnote is astonishing. Note that Frege says, not that (1) seems to be
false, but that it “seems to be unprovable” [emphasis ours]. There is, moreover, rea-
son to suppose Frege believed (1) to be not false, but true. For one thing, had Frege
believed it to be false, he presumably would have said so. Furthermore, Frege’s
difficulty was probably not that he did not know how to prove (1), but rather that
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he did not know how to prove it in his formal system. There is a very simple proof
of (1) that depends only upon (1’), Dedekind’s claim that every infinite number
is (the number of a concept that is) Dedekind infinite, and the observation, made
earlier, that ‘d is Dedekind infinite’ is equivalent to ‘dPd’. We may take (1’) to be
one half of a dilemma, the other half of which is:

—0P*~d — dPa — dP#[x : xP*~d] — aP#[x : xP*"a.

This proposition may be proved as follows. Suppose the antecedent. Since d is not
finite, it is Dedkind infinite. So dPd, and since dPa, d = a, and now the consequent
is immediate.

This proof is one Frege might well have known. It is not at all difficult and once
(1') has been proved, a proof of (1) by dilemma suggests itself. Moreover, Frege
was familiar with Dedekind’s claim and, at least while he was working on Part
IT of Grundgesetze, believed it to be true (Frege, 1984, op. 271).1* As for the
observation, not only is it easily proved, it is natural, in Frege’s system, just to
use ‘dPd’ as a definition of ‘d is Dedekind infinite’ (cf. Grundgesetze, Proposition
426). We conclude that Frege believed (1) to be a true but unprovable formula of
Frege Arithmetic.

Frege’s belief that (1) is unprovable in Frege Arithmetic is mistaken, however.
A proof of (1) can be given that makes use of techniques that are different from
any found in §§82-83 of Die Grundlagen or in relevant sections of Grundgesetze,
but with which Frege was familiar. What we shall prove is that the hypothesis
0P*=d of (1'), that d is finite, is dispensable. More precisely, we shall prove that
if dP#[x : xP*=d)], then #[x : xP*=d)| is finite, from which it follows that d is finite,
since, by Proposition (143) of Grundgesetze (viz, dPb — aP*b — aP*~d), any
predecessor of a finite number is finite.

Theorem (FA). Suppose dP#[x : xP*=d). Then #[x : xP*=d)| is finite.'*

Proof. InFA, define h : [x : 0P*=x] — [x : xP*=d] by:

o Y if yPh(n)
h(0) = d; h(”“)_{h(n) if —Jy(yPh(n))

The definition is OK since P is one-one.

13 Of course, if Frege did know of our proof and believed (1) to be unprovable, then he must have
believed Dedekind’s result too to be unprovable, which he (rightly) did. For further discussion, see
Heck (1995).

14 This result is due to Heck; the present proof to Boolos.
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Since in general yR*z = z(R")*y,”> Vx(xP*=d = d(P”)*~x), and so & is onto.
Therefore [x : xP*=d] is countable, i.e., either finite or countably infinite. If the
latter, then #[x : xP*=d] = X, and by the supposition of the theory, dPX,. But
as we saw just after the proof of (4'), xP*= Xy — x = X. Since dPX, dP*= Xy,
d = Xy, and #[x : xP*=d] = 1, contra #[x : xP*=d] = d. Therefore #[x : xP*=d] is
finite. U

Thus Frege could have proved (1) after all and thus appealed to Induction 2 to prove
(0). Of course the technology borrowed from second-order arithmetic used in the
proof just given, particularly the inductive definition of A, is considerably more
elaborate than that needed to derive Induction 3 from Induction 2. The conjectural
proof is unquestionably to be preferred to this new one on almost any conceivable
grounds.

So, Frege erred in §§82-83 of Die Grundlagen, where an oversight marred the
proof he outlined of the existence of the successor. Mistakes of that sort are hardly
unusual, though, there are four or five ways the proof can be patched up, and
Frege’s way of repairing it cannot be improved on. But even if one ought not
to make too much of Frege’s mistake, there is lots to be made of his belief that (1)
was true but unprovable in his system. One question that must have struck Frege
is: If there are truths about numbers unprovable in the system, what becomes of the
claim that the truths of arithmetic rest solely upon definitions and general logical
laws? Another that may have occurred to him is: Can the notion of a truth of logic
be explained otherwise than via the notion of provability?

15 RY is the converse of R.
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Appendix 1: Counterparts in Grundgesetze of some
propositions of Die Grundlagen

Proposition of this chapter

Proposition of Grundgesetze

HP 32,49

Vx(—Fx) — 0 =#[x: Fx] 94,97

781. 114

78.2 113

78.3 117

78.4 122

78.5 71, 89, 90

78.6 107

—zP0 108

Induction 1 123

The basic fact about the weak ancestral | 134, 136

The Lemma 141

Induction 2 144

(5" 145

(4" 149

(1) 150

Induction 3 152

(2) 154

(0) 155
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