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1 Opening

As is now well-known, axioms for arithmetic can be interpreted in second-order logic plus ‘Hume’s Princi-

ple’, or HP:

Nx : Fx = Nx : Gx iff ∃R[∀x∀y∀z∀w(Rxy ∧Rzw → x = z ≡ y = w)∧

∀x(Fx→ ∃y(Rxy ∧Gy))∧

∀y(Gy → ∃x(Rxy ∧ Fx))]

This result isFrege’s Theorem. Its philosophical interest has been a matter of some controversy, most of

which has concerned the status of HP itself. To use Frege’s Theorem to re-instate logicism, for example,

one would have to claim that HP was a logical truth. So far as I know, no-one has really been tempted by

that claim. But Crispin Wright claimed, in his bookFrege’s Conception of Numbers as Objects(1983), that,

even though HP is not a logical truth, it nonetheless has the epistemological virtues that were really central

to Frege’s logicism. Not everyone has agreed.1 But even if Wright’s view were accepted, there would be

another question to be asked, namely, whether the sorts of inferences employed in the derivation of axioms

for arithmetic from HP preserve whatever interesting epistemological property HP is supposed to have. Only

then would the axioms of arithmetic then have been shown to have such interesting properties.

The problem is clearest for a logicist. If the axioms of arithmetic are to be shown to be logical truths,

not only must HP be a logical truth, the modes of inference used in deriving axioms of arithmetic from

it must preserve logical truth. They must, that is to say, be logical modes of inference. For Wright, the

crucial question is less clear. It would be enough for his purposes if these modes of inference preserved

HP’s interesting epistemological properties, whatever these were taken to be. But Wright has, nonetheless,

typically been content to claim that second-order reasoning is logical reasoning and to suppose, reasonably

enough, that, if that claim is good enough for the logicist, it is good enough for his purposes, too.

The claim that ‘second-order logic is logic’, as it is often put, has had both defenders and detractors.2 I am

1 See (Boolos, 1998a) and (Wright, 2001) for one nice back-and-forth.
2 Quine (1986) was famously skeptical. George Boolos (1998c; 1998e) was an early proponent.
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not going to enter that debate here. What I want to argue here is that a neo-logicist does not need to commit

herself to any claims about second-order logic.

In a typical proof of Frege’s Theorem, axioms for arithmetic are derived from HP in second-order logic, but

not all of the power of second-order logic is needed for the proofs of the axioms. The power of second-order

logic derives from the so-called comprehension axioms, each of which states, in effect, that a given formula

defines a ‘concept’ or ‘class’—something in the domain of the second-order variables. These axioms take

the form:3

∃F∀x[Fx ≡ A(x)].

In full-second order logic, one has such an axiom for every formulaA(x) (in which ’F’ does not occur free).

At the other extreme, one could consider a system in which one had no comprehension axioms at all, but

the weakest system seriously discussed is ‘predicative’ second-order logic, in which one has comprehension

only for formulae containing noboundsecond-order variables. Predicative second-order logic is weak in

a well-defined sense: Given any first-order theoryΘ, adding predicative second-order logic toΘ yields a

conservative extension of it.4 Full second-order logic, on the other hand, is extremely powerful, and it is that

power that underlies much of the skepticism about the appropriateness of the term ‘second-orderlogic’.5

Between predicative second-order logic and full second-order logic are systems of intermediate strength,

each admitting a different set of comprehension axioms. In principle, any set of comprehension axioms

will do, and there are many that have been considered.6 What are perhaps the most natural intermediate

systems arise, though, from syntactic restrictions on the formulae appearing in the comprehension axioms.

Say that a formula containing no bound second-order variables isΠ0
∞. Then whereφ is Π0

∞, formulae of

the form∀F1 . . .∀Fnφ and∃F1 . . .∃Fnφ areΠ1
1 andΣ1

1, respectively. Ifφ is Σ1
n (Π1

n), then∀F1 . . .∀Fnφ
(∃F1 . . .∃Fnφ) is Π1

n+1 (Σ1
n+1). Second-order logic withΠ1

n comprehension has only those comprehension

axioms in whichA(x) is Π1
n (or simpler).

It is important to note that, as I have formulated theΠ1
n comprehension scheme, free second-order variables

are allowed to occur in the comprehension axioms. As a result, there is no significant difference between

Π1
n comprehension andΣ1

n comprehension. IfA(x) is aΣ1
n formula, then its negation is (trivially equivalent

to) aΠ1
n formula. Hence,Π1

n comprehension delivers a conceptF such that:

∀x[Fx ≡ ¬A(x)].

3 There are similar axioms for many-place predicates, of course.
4 Given any model forΘ, let the second-order domain contain exactly the subsets of the first-order domain definable in the

language ofΘ so interpreted. The result is a model ofΘ plus predicative comprehension, which is thus a conservative extension of
Θ. (There is some need for a care here whenΘ contains axiom schemata: The schemata must not come to have new instances as a
result of the addition of second-order vocabulary.)

5 Boolos expresses such a worry in (1997). Peter Koellner has developed a extremely detailed and sophisticated version of this
objection in recent work.

6 The standard reference on second-order logic is now (Shapiro, 1991), especially Chs 3–4, but see also (Feferman, 1984). There
are many intermediate systems other than those we shall consider here.
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But then predicative comprehension delivers a conceptG such that:

∀x[Gx ≡ ¬Fx],

and so we have:

∃G∀x[Gx ≡ A(x)].

We might as well therefore regardΠ1
n comprehension asΠ1

n-or-Σ1
n comprehension.

More significantly, consider the formula:

∀F [Fa ∧ ∀x(Fx ∧ Pxy → Fy) → Fb].

This formula defines the so-called ‘weak ancestral’ of the relationP. It is obviouslyΠ1
1, soΠ1

1 comprehen-

sion delivers a conceptN such that:

Nn ≡ ∀F [Fa ∧ ∀x(Fx ∧ Pxy → Fy) → Fn].

If we takea to be 0 andP to be the relation of predecession—readPxy as: x is the number immediately

precedingy—then that is Frege’s definition of the concept of a natural number. AndΠ1
1 comprehension

delivers the existence of this concept even ifP itself has been defined by aΣ1
1 formula, as it usually is in

Fregean arithmetics:

Pab ≡ ∃G∃y[b = Nx : Gx ∧Gy ∧ a = Nx : (Gx ∧ x 6= y)].

The existence of the relationP is guaranteed byΣ1
1—equivalently,Π1

1—comprehension.

We may seem to be cheating here: Won’t such a method end up reducingall comprhension toΠ1
1 com-

prehension? That would indeed be disastrous, but no such result is forthcoming. Chaining instances of

comprehension together works in this case only because the variableF does not occur within the scope of

the quantifier∃G that appears in the definition ofP. The method will allow us to applyΠ1
1 comprehension

twice to a formula of the form:

∀F [. . . F · · · → ∃G(. . . G . . . )],

butnot to one of the form:

∀F [. . . F · · · → ∃G(. . . G . . . F . . . )].

But one might still think such ‘chaining’ impermissible, even if coherent. Comprehension, so formulated,

collapsesΠ1
1 andΣ1

1 comprehension and, moreover, fails to distinguishΠ1
1 sets from sets that areΠ1

1 in

Π1
1 sets. Is that really wise? Obviously, I am not suggesting that these distinctions do not matter, and if

one wishes to use second-order logic to investigate problems to which these distinctions are relevant, then

comprehension should be formulated so as to prohibit such ‘chaining’: One need only prohibit free second-

order variables from appearing in the comprehension scheme. But it is not clear that these distinctions matter

in the present context. I shall discuss the matter further below (see page 16). For the moment, I appeal to
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authority: Solomon Feferman formulates the comprehension axioms this way in his classic paper “Systems

of Predicative Analysis” (1964).

Both the concept of predecession and the concept of natural number are thus delivered byΠ1
1 comprehension:

That should make it plausible that the standard proof of Frege’s Theorem requires onlyΠ1
1 comprehension, a

conjecture that can be verified by working through the proof in detail, paying careful attention to what com-

prehension axioms are used.7 There is a sense in which this result is best possible. I have mentioned several

times that axioms for arithmetic can be derived from HP in second-order logic, but I have not yet said which

such axioms I have in mind. There are, of course, many equivalent axiomatizations—I shall present one

such axiomatization below—but what is important at the moment is that standard presentations of Frege’s

Theorem do not include a derivation of the usual first-order axioms for addition and multiplication. The rea-

son is that, in a standard second-order language, the recursive defintions of addition and multiplication can

be converted into explicit defintions in a way due, independently, to Dedekind and to Frege. The recursion

equations themselves—and these just are the first-order axioms—can then be recovered from the definition.

Unsurprisingly, however, the derivation of the recursion equations from the explicit definition needs more

than predicative comprehension. The proof that addition and multiplication are well-defined and satisfy the

recursion equations is by induction, and the induction is on a predicate containing the definition of addition

or multiplication. The legitimacy of the induction thus presumes that the predicate in question defines a

relation. Since the formula that defines addition isΠ1
1, we will need at least that much comprehension even

to interpret first-order PA.

One can at least imagine a view that would regardΠ1
1 comprehension axioms as logical truths but deny

that status to any that are more complex—a view that would, in particular, deny that full second-order logic

deserves the name. In light of what has been said, such a view would serve the purposes of a new-logicist

such as Wright. I do not expect it to be obvious at this point how such a view might be motivated, and

it is in fact no part of the view I want to defend here that, say,∆1
3 comprehension axioms arenot logical

truths. What I am going to suggest, however, is that there is a special case to be made on behalf ofΠ1
1

comprehension. Or something like it.

2 Predecession

As it happens, the only comprehension axioms one actually needs for the proof of Frege’s Theorem—besides

a handful of instances of predicative comprehension—are these:

∃P{Pab ≡ ∃G∃y[b = Nx : Gx ∧Gy ∧ a = Nx : (Gx ∧ x 6= y)]}

∃R{Ran ≡ ∀F [Fa ∧ ∀x(Fx ∧ Pxy → Fy) → Fn]}
7 The mentioned fact was first noted in (Heck, 2000). For a detailed proof and relevant discussion, see (Linnebo, 2004). Linnebo

also proves a converse: PA withΠ1
1-comprehension is interpretable in FA withΠ1

1-comprehension. See also (Burgess, 2005), which
will deservedly become the standard reference soon enough.
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The latter, of course, defines the relation that would usually be written:ξP ∗=η. That is, it defines the relation

that is the ancestral of predecession.

Øystein Linnebo suggests that there is something seriously wrong with Frege’s defintion of predecession

(2004, pp. XXX-XX). It simply does not seem reasonable to suppose that a notion as simple as that of

predecession should be so logically complex. Consider, for example, the proof of the familiar fact that every

number other than zero has a predecessor. This proposition,x 6= 0 → ∃y(x = Sy), is one of the axioms of

Robinson arithmetic, Q, but it is redundant in PA, since it is provable in PA and, in fact, in the much weaker

theory known asI∆0, which has induction only for bounded formulae: The induction can be carried out on

x 6= 0 → ∃y < x(x = Sy). In Frege arithmetic, however, formalization of that proof would requireΣ1
1

comprehension, since the induction must now be onx 6= 0 → ∃y(Pyx).8 Are we really to believe that such

strong logical resources are needed for the proof of such a simple statement? The more plausible view is the

one enshrined in the usual treatment of arithmetic: Predecession is aprimitivenotion.

Linnebo’s concern is a sensible one, but I think it can be answered. Although the definition of predecession

is undeniablyΣ1
1 in form, it is not, I want to suggest,Σ1

1 in spirit. The definition one would really like to

give is this one:

(P-lite) P (Nx : Gx,Nx : Fx) ≡ ∃y(Fy ∧Nx : Gx = Nx : (Fx ∧ x 6= y)).

To be sure, (P-lite) is not a proper definition. It does not tell us whenPab but only whenP (Nx : Gx,Nx :
Fx): Nothing in (P-lite) tells us whether Julius Caesar, that same familiar conqueror of Gaul, precedes 0 or

not. But the obvious reply is that it was supposed to be implicit in (P-lite) thatonly numbers are predecessors

or successors. If Caesar is a number, then he is the number ofFs, for someF, in which case (P-lite) will

determine which numbers he precedes and succeeds. If he is not a number, then he does not precede or

succeed any number. Hence, the question which numbers Caesar precedes and succeeds is equivalent to the

question whether Caesar he is a number and, if so, which one he is. Well, if that isn’t a familiar problem!

Maybe it is even a serious problem. But it is a problem the neo-logicist had anyway.

Suppose that the Caesar problem has either been solved or justifiably ignored. (Maybe it isn’t a serious

problem, just an amusing one.) Then (P-lite) tells one everything one needs to know about predecession.

How would that allow the neo-logicist to avoid appealing toΣ1
1 comprehension? I suggest that a neo-logicist

should regard predecession asprimtiveand regard both (P-lite) and

(P-imp) Pab→ ∃F (a = Nx : Fx) ∧ ∃G(b = Nx : Gx),

as analytic of that notion. (P-imp makes the implicit requirement that only numbers can be or have prede-

cessors explicit.) No appeal to comprehension is then needed to guarantee that the relation of predecession

exists, any more than in the usual formulation of second-order arithmetic.

One might worry that this strategy makes everything too easy. Why can’t the neo-logicist just regard the

ancestral as primitive and take the usual definition of the concept of natural number to be analytic of it?

8 A different proof can be given that would not require comprehension at all, but there are other examples of this same form.
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Then no appeal to comprehension would be needed! It will become clear that I am in a way sympathetic

with that suggestion, but the arguments just offered on behalf of the claim that (P-lite) is analytic do not

generalize to the case of the ancestral. Those arguments apply only to certain sorts of explicit definitions,

namely, those that can be resolved into something of the form:

Ra1 . . . an
df
≡ ∃F1 . . .∃Fn[a1 = Φx : F1x ∧ · · · ∧ an = Φx : Fnx ∧Rx(F1x, . . . , Fnx)],

which is equivalent to the conjunction of

(R-lite) R(Φx : F1x, . . . ,Φx : Fnx) ≡ Rx(F1x, . . . , Fnx)

and

(R-imp) Ra1 . . . an → ∃F1(a1 = Φx : F1x) ∧ · · · ∧ ∃Fn(an = Φx : Fnx).

The arguments presented above purport to show that (R-lite) is already an adequate definition ofR, modulo

an instance of the Caesar problem. But they apply only to this sort of case.

The case of the ancestral is not such a case,9 but there is a different such case that is important. Consider

the so-called predicative fragment ofGrundgesetze, which consists of predicative second-order logic plus a

schematic form of Frege’s Basic Law V:

x̂Fx = x̂Gx ≡ ∀x(Fx ≡ Gx).

This theory is known to be consistent (Heck, 1996). What saves the system from inconsistency is the fact

that membership is defined in terms of aΣ1
1 formula:

a ∈ b ≡ ∃F (b = x̂Fx ∧ Fa),

and we do not have comprehension for such formulae in the predicative framgment. So, crucially, we cannot

prove naïve comprehension:

a ∈ x̂(x /∈ x) ≡ a /∈ a,

whence the paradox that threatens to arise when we takea to bex̂(x /∈ x) is averted. But it is averted only at

the cost of our inability to prove the formula just displayed, and that has always seemed to me to be deeply

counterintuitive. I can now give some content to the intuition thus countered.

The definition of membership is of precisely the form we have been discussing. The definition of member-

ship one would really like to give is this one:

(∈ -lite) a ∈ x̂Fx ≡ Fa.

That is not a proper definition. It does not tell us whena ∈ b but only whena ∈ x̂Fx, and so on and

9 It is not such a case because we know that the ancestral cannot be defined by aΣ1
1 formula.
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so forth. Butmodulothe Caesar problem, or so I would argue, (∈-lite) is a perfectly good definition. Any

neo-Fregean who is prepared to countenance Basic Law V ought to regard membership as primitive, and

characterized by (∈-lite) and

(∈ -imp) a ∈ b→ ∃F (b = x̂Fx).

But then Russell’s paradox reappears. And that seems to me an intuitively satisfying result. There is nothing

truly impredicative about the definition of membership. The substitution ofx /∈ x for Fx in Basic Law V

oughtto be permitted. The predicative fragment ofGrundgesetzemay be consistent, then, but it is not really

coherent.10

3 Ancestral Logic

As noted above, the only impredicative instances of comprehension needed for the proof of Frege’s Theorem

are these:

∃P{Pab ≡ ∃G∃y[b = Nx : Gx ∧Gy ∧ a = Nx : (Gx ∧ x 6= y)]}

∃R{Ran ≡ ∀F [Fa ∧ ∀x(Fx ∧ Pxy → Fy) → Fn]}

The arguments of the last section purported to establish that the former has no significant epistemological

costs. If that is accepted, then we may draw the following intermediate conclusion: As far as the logic used

in the proof of Frege’s Theorem is concerned, the question whether it is epistemologically innocent reduces

to the question what our attitude should be to Frege’s definition of the ancestral.

The assumption that the ancestral of an arbitrary relation exists is much weaker than fullΠ1
1 comprehension.

In fact, there is a logic known asancestral logicwhich formalizes the logic of the ancestral in an otherwise

first-order language.

We may characterize ancestral logic semantically as follows (Shapiro, 1991, p. 227).11 We begin with

an ordinary first-order languageL and form a new languageL∗ by adding an operator∗xy which forms a

relational expression from a formula with two free variables, these being bound by the operator. So we have

formulae of the form:∗xy(φxy)(a, b), whereφxy is a formula. Let an interpretation ofL be given. We

expand it to an interpretation ofL∗ as follows:12 Suppose thatφxy is satisfied by exactly the ordered pairs

in some setΦ; then∗xy(φxy)(a, b) is true if, and only if, there is a finite sequencea = a0, . . . , an = b such

that each< ai, ai+1 >∈ Φ. Less formally: It is true just in casea can be linked tob by a finite sequence

of φ-steps. We require that there should be at least one such step:∗xy(φxy) is therefore thestrongancestral

of φ, so-called because we do not, in general, have:∗xy(φxy)(a, a). The weak ancestral ofφ, denoted

∗=
xy(φxy), may be defined in the usual way as:∗xy(φxy)(a, b) ∨ a = b. We shall use the more familiar

notationφ∗ab andφ∗=ab, omitting the bound variables when there is no danger of confusion.

10 Note that this argument does not even purport to show that predicativity restrictions are not otherwise justified. It is entirely
specfic to the case of Basic Law V.

11 See also (Avron, 2003) for recent work on such logics.
12 This specification is less precise that it would really need to be, since it does not allow for additional free variables inφ. But

let us not be too pedantic.
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It is easy to see that ancestral logic is not completely axiomatizable: It permits the formulation of a categor-

ical theory of arithmetic (Shapiro, 1991, p. 228).13 But, of course, that need not prevent us from partially

axiomatizing the logic. One way to proceed would be to take as introduction rules

φab ` φ∗ab

φ∗ab, φbc ` φ∗ac

and as an elimination rule:

φ∗ab ` ∀x(φax→ A(x)) ∧ ∀x∀y(A(x) ∧ φxy → A(y)) → A(b),

Call this systemweakancestral logic. Its introduction rules reflects the ‘inductive’ character of the ancestral:

Takingφab to mean:b is a’s parent, they tell us that one’s parents are one’s ancestors and that any parent of

an ancestor is an ancestor. The elimination rule is a principle of induction, in schematic form.

Weak ancestral logic incorporates, in its elimination rule, one half of Frege’s definition of the ancestral. But

it does not incorporate the other half of Frege’s definition, and that is, to my mind, an important weakness.

Consider the following argument.

Suppose thatb is a’s ancestor and thatc is b’s ancestor. Suppose further (i) that all ofa’s parents

are blurg and (ii) that blurghood is hereditary—that is, that any parent of someone who is blurg

is also blurg. Sinceb is a’s ancestor,b is blurg, by the elimination rule. But then, by (ii), all

of b’s parents are blurg and so, sincec is b’s ancestor,c is blurg, again by the elimination rule.

That is, if (i) and (ii), thenc is blurg. And so, by Frege’s definition of the ancestral,c is a’s

ancestor.

That, obviously, is an argument for the transitivity of the ancestral and, so far as I can see, nothing like it can

be formalized within weak ancestral logic. That is not to say that the transitivity of the ancestral cannot be

proved in weak ancestral logic. It can be, though in a different way, namely, in roughly the way Frege proves

it in Begriffsschrift.14 But that is a different argument, one whose formalization in standard second-order

logic requires the use ofΠ1
1 comprehension. No comprehension at all is needed for the formalization of

the argument just given (Boolos and Heck, 1998, p. 319). That we can formalize the more complicated

argument in weak ancestral logic but not the less complicated one suggests to me that it has things upside

down.
13 Add to a first-order formulation ofPA the axiom:∀n[∗=xy(y = Sx)(0, n)].
14 Frege’s proof is by induction onφ∗aξ. The elimination rule yields

φ∗bc → [∀x(φbx → φ∗ax) ∧ ∀x∀y(φ∗ax ∧ φxy → φ∗ay) → φ∗ac]

The second conjunct follows immediately from the second introduction rule; the first follows fromφ∗ab and the second introduction
rule. Hence,φ∗bc ∧ φ∗ab → φ∗ac.

It would be cleaner if I had a nice example of a theorem whose proof is easily formalized using Frege’s definition of the ancestral
but which cannot be formalized in weak ancestral logic. There must be some, but I haven’t given the matter enough thought to
identify one.
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One may have been wanting to ask what the nonsense term ‘blurg’ is doing in the above argument, and

that is a perfectly reasonable question. But such reasoning is very common. At least it is very common

for me to engage in such reasoning, especially when I am teaching logic to undergraduates. Perhaps that

would be more obvious if I were to replace ‘blurg’ with ‘F’, but one does not have to use letters to engage

in such reasoning. And there is no reason to dismiss it out of hand. In many cases, such reasoning can

be understood as tacitly semantic. We may take ‘blurg’ to be a variable that ranges over expressions and

construe the argument as a whole as tacitly invoking semantic notions, such as truth. A related proposal

would construe the argument substitutionally. On either construal, however, this particular argument would

only establish something about concepts we canname, whence it is surely invalid. But it seems to me a

perfectly good argument, so some other way of understanding such reasoning is needed.

A fan of second-order logic might suggest that ‘blurg’ is a second-order variable and that the argument as a

whole tacitly involves second-order quantification, its intuitive force revealing the extent to which second-

order reasoning is intuitively compelling (Boolos, 1998e, pp. 59–60). But there are two aspects to this

suggestion, and they can be disentangled: We can interpret ‘blurg’ as the natural language correlate of afree

second-order variable and simultaneously deny that second-orderquantificationis involved in the argument

at all.

Given a first-order language, add to it a stock of second-order variables. We do not permit these variables to

be bound by quantifiers: They occur only free. Thus, there are formulae in the language such as:

∀x(φax→ Fx) ∧ ∀x∀y(Fx ∧ φxy → Fy) → Fb,

whereF is a free second-order variable. An interpretation of such a formula is simply a first-order inter-

pretation. Free second-order variables are treated just as predicate-letters are in first-order logic: They are

assigned subsets of the domain. Implication is then defined as usual: A set of formulaeΓ implies a formula

A if, and only if, every interpretation that makes all formulae inΓ true also makesA true. A formula is valid

if it is implied by the empty set of formulae.15

The proof-theory is also straightforward. I shall take us to be working in a system of natural deduction.

Such a system will have some mechanism or other for keeping track of the premises used in the derivation

of a given formula. I assume that we have some natural set of rules for first-order logic already in place. No

special rules that govern free second-order variables are being introduced at this point. Call the resulting

system minimalschematic logic(minimal SL). It should be clear that minimal SL is sound with respect to

the semantics mentioned above. It would also appear to be complete, since the free second-order variables

hardly differ from predicate-letters.

We can now reformulate ancestral logic. The elimination rule, which we may call (*–), remains one direction

of Frege’s explicit definition of the ancestral, though it now need not be formluated as a schema but can be

formulated using a free second-order variable:

φ∗ab ` ∀x(φax→ Fx) ∧ ∀x∀y(Fx ∧ φxy → Fy) → Fb

15 A formula of schematic logic is therefore valid only if its universal closure is a valid second-order formula.
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The introduction rule (*+) is the other direction of Frege’s definition of the ancestral:

∀x(φax→ Fx) ∧ ∀x∀y(Fx ∧ φxy → Fy) → Fb ` φ∗ab,

whereF may not be free in any premises on which the premise of this inference itself depends.16 Call the

resulting system (first-order)minimal schematic ancestral logic(minimal SAL). It should again be clear

that this logic is sound if the ancestral is interpreted as indicated above. If, of course, is not complete with

respect to that semantics, since no recursive axiomatization can be.

What we have done is to transcribe Frege’s explicit definition of the ancestral into the framework of schematic

logic. Why does the transcription work? Consider the introduction rule, (*+). If we can prove

(†)∀x(φax→ Fx) ∧ ∀x∀y(Fx ∧ φxy → Fy) → Fb,

then, in standard second-order logic, we can use universal generalization to conclude that

(††) ∀F [∀x(φax→ Fx) ∧ ∀x∀y(Fx ∧ φxy → Fy) → Fb]

and use Frege’s definition of the ancestral to conclude thatφ∗ab. Similarly in the case of the elimination

rule: φ∗ab and Frege’s definition together imply (††) which in turn implies (†). But we can now see that (††)
is just a rest stop and that Frege’s explicit definition is a ladder we can kick away.17 Goodbye, ladder.

The transitivity of the ancestral can be proven in minimal SAL, thus:18

[1](1) φ∗ab Premise

[2](2) φ∗bc Premise

[3](3) ∀x(φax→ Fx) ∧ ∀x∀y(Fx ∧ φxy → Fy) Premise

[1](4) ∀x(φax→ Fx) ∧ ∀x∀y(Fx ∧ φxy → Fy) → Fb (1, ∗−)
[1, 3](5) Fb (3, 4)
[1, 3](6) ∀x(φbx→ Fx) (3, 5)
[2](7) ∀x(φbx→ Fx) ∧ ∀x∀y(Fx ∧ φxy → Fy) → Fc (2, ∗−)

[1, 2, 3](8) Fc (3, 6, 7)
[1, 2](9) ∀x(φax→ Fx) ∧ ∀x∀y(Fx ∧ φxy → Fy) → Fc (3, 8,→ +)
[1, 2](10) φ∗ac (9, ∗+)

So minimal SAL does not suffer from the same problem that plagues weak ancestral logic.

But minimal SAL is still a very weak logic. The transitivity of the ancestral can be proven in minimal

SAL because it can be proven in second-order logic without any appeal to comprehension. But the proof of

16 It is here, of course, that the additional expressive power provided by the presence of free second-order variables makes itself
felt: No such rule could possibly be formulated in a purely first-order language.

17 Thanks to Stewart Shapiro for the allusion.
18 I have not included all the steps that would be required to make this argument formally precise, only enough to make it clear

that it could be.
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theorem (124) ofBegriffsschrift:

φ∗ab ∧ ∀x∀y∀z(φxy ∧ φxz → y = z) ∧ φac→ φ∗=ac,

breaks down, as a little experimentation will show. The reason is that the proof requiresΠ1
1 comprehension,

and there is nothing in minimal SAL that gives us the power ofΠ1
1 comprehension.19

How are we to get that power without second-order quantifiers? Easily. There are no explicit comprehension

axioms in the formal systems ofBegriffsschriftandGrundgesetze. Rather, Frege has a rule of substitution:

Given a theorem of the form. . . F . . . , infer . . . φ . . . , for any formulaφ (subject to the usual sorts of

restrictions). The substitution rule is, as is well-known, equivalent to comprehension.20 What we need here

is thus a rule of substitution: Suppose we have derivedA from the premises inΓ, and letAF/φ be the result

of replacing all occurences ofF in A by the formulaφ (subject to the usual sorts of restrictions, again). Then,

if F is not free inΓ, we may inferAF/φ. As a special case, of course, ifA is provable (from no assumptions),

then we may infer any substitution instance of it. And, given this rule, theorem (124) ofBegriffsschriftcan

now be proven. See the appendix for the proof.

The substitution rule is clearly sound given the semantics sketched above, but it is another question whether

we should regard it asjustifiedand, if so, on what sort of ground. This question will be considered below,

in section 7.

We thus have two kinds of systems: There are the systems without the substitution rule—minimal schematic

logic and minimal schematic ancestral logic—and there are the systems with the substitution rule—what we

may call full schematic logic and full schematic ancestral logic. In fact, there are further distinctions to

be drawn, since the substitution rule can be restricted in various ways. We might, for example, require

the formula that replacesF not to contain *. Adding this rule to minimal schematic ancestral logic would

give us the effect of predicative comprehension, so we might call the resulting systempredicativeschematic

ancestral logic.

4 Schemata in Schematic Logic: A Digression

One major reason second-order languages are so appealing is that principles that have to be formulated, in

first-order languages, as axiom-schemata can be formulated in second-order languages as single axioms. It

would be nice if schematic languages had a similar appeal, if, for example, the axiom of separation could be

expressed by the single axiom:

(Sep) ∀z∃y∀x(x ∈ y ≡ x ∈ z ∧ Fx),
19 Zoltan Gendler-Szabó has proved that comprehension is, in fact, required. It is also required for the proof of the famous

theorem (133):
φ∗=ab ∧ φ∗=ac ∧ ∀x∀y∀z(φxy ∧ φxz → y = z) → φ∗bc ∨ b = c ∧ φ∗cb,

which thus cannot be proven in minimal SAL, either.
20 Substitution implies comprehension: Trivially, we have∀x(Fx ≡ Fx), so existential generalization yields:∃G∀x[Gx ≡ Fx];

by substitution:∃G∀x[Gx ≡ φx], for each formulaφ. The proof of the converse is messier but not difficult: It is by induction on
the complexity of the formula. . . F . . . .
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from which its various instances could then be inferred by substitution. But it can’t be, not if we characterize

the rule of substitution as we did above. Atheory, after all, is a set of formulae, and its theorems are the

formulae that are deducible from the sentences in that set.21 Such a deduction would assume some of the

sentences of the theory as premises and then derive a theorem from them. If (Sep) is taken as a premise in

a deduction, however, the variableF will obviously be free in that premise, whence it cannot be substituted

for. Indeed, it is easy to see that (Sep) does not imply all (or even most) other instances of separation, not if

‘implies’ is defined as it was above. So it is a very good thing that they cannot all be deduced from it.

There is really a more basic problem here: I’ve yet to say what it might mean to assert something like (Sep);

I’ve yet, that is, to say what the truth-conditions of (Sep) are. One might reasonably want to deny that (Sep)

hastruth-conditions: Since it contains a free second-order variable, one cannot speak of it as being true or

false absolutely but only as being true or false under this or that assignment of a value toF. But there is an

alternative: One can give free second-order variables the so-called ‘closure interpretation’, effectively taking

(Sep) to be true just in case its universal closure is true. We do not actually need to consider the universal

closure, of course, for we can define truth for formulae of schematic languages directly: A formula is true

if, and only if, it is true under all assignments to its free variables.

This definition of truth would solve our problem concerning separation. Unfortunately, however, it brings

a whole host of other problems with it.22 To make further progress, we need to distinguish two sorts of

assumptions that occur in argument. Sometimes, one makes an assumption ‘for the sake of argument’. For

example, one might assume the antecedent of a conditional and try to prove its consequent in order to prove

a conditional. So, for example, if one were trying to proveF0 → G0, one might begin by assumingF0:

“Suppose 0 is blurg”, one might say. One is not to continue with, “So 0 is odd. And prime. And, for the

matter, even.” One is not, that is to say, expect to be understood as having assumed that zero has every

property there is. If we call an assumption made ‘for the sake of argument’ asupposition, then what has

been shown is that suppositions are not to be understood in terms of their universal closures, the reason being

that a supposition is relevantly like the antecedent of a conditional: No-one would suppose thatF0 → G0
should be understood as∀F (F0) → ∀G(G0), however tempted they were by the thought that it should be

understood as∀F∀G(F0 → G0).

But this observation does not make the closure interpretation of (Sep) any less available. The reason is that

suppositions are mere tools of argument. They are not put forward as true in their own right. In a sense,

that is obvious, since one sometimes makes a supposition only forreductio, but I am suggesting something

stronger, that suppositions are not evenassumedto be true: That is not the role they play in argument. Still,

it ought nonetheless to be possible to assume that something is true, if only to investigate its consequences.

21 Sometimes the term ‘theory’ is used in a different sense—a theory is a deductively closed set of sentences, and its theorems
are just the members of that set—but that sense is not relevant here.

22 Shapiro considers a logicL2K−, which is similar to the systems we have been discussing. Free second-order variables are
given the closure interpretation. It turns out, however, to be surprisingly difficult to define a notion of implication with respect to
which any reasonable set of deductive principles is sound (Shapiro, 1991, p. 81). In the end, Shapiro does define such a notion, but
it is not really consistent with the closure interpretation. On Shapiro’s definition,Fx does not implyGx. But if the former really
means∀F (Fx) and the latter really means∀G(Gx), it should. If one wanted to say that it is perhaps best ifFx doesn’t implyGx,
I’d happily agree, but that intuition isn’t consistent with the closure interpretation.
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Let us reserve the termhypothesisfor an assumption of this kind. Then there is no bar to our understanding

hypotheses in terms of their universal closures.

Formally, then, we distinguish within an inference’s premises between its suppositions and its hypotheses.

An inference is valid if every interpretation that makes all of its suppositions and hypotheses true—where

truth for hypotheses is understood in terms of the closure interpretation—also makes its conclusion true.

The distinction must be tracked in the proof-theory as well, and rules of inference that discharge premises,

such asreductioand conditional proof, will need some modification: The premise discharged must be a

supposition, not an hypothesis. But the crucial observation, for our purposes, is that the rule of substitution

can now be relaxed: One can inferAF/φ from A so long asF is not free in any supposition on whichA

depends; it may be free in hypotheses on whichA depends. This rule is clearly sound: Since, semantically

speaking, hypotheses are treated as if they were universally closed, it is as if there aren’t any free variables

in the hypotheses, at least as far as the definition of implication is concerned.

There are other technical issues we could discuss, but let me set them aside: How they are resolved does not

really bear upon the philosophical issue that opened this discussion.23 The question with which we started

was whether we can regard (Sep) as a formulation of separation. The answer is that we can if we regard a

theory as a set ofhypothesesfrom which theorems are to be deduced. As anhypothesis, (Sep) does imply

all other instances of separation, including those containing other free variables.

One might wonder why I chose separation as my example rather than induction, since the same issues will,

of course, arise with respect to induction in the context of schematic logic. They do not, however, arise in

the context ofancestrallogic, since we can formulate induction in ancestral logic as the single sentence:

∀z ∗=
xy (y = Sx)(0, z).

As we shall see, this point can be generalized: Any principle expressed in first-order logic by an axiom

schema can be expressed by a single sentence in Arché logic, to be introduced next.

5 Arché Logic

The methods used in section 3 allowed us to transcribe Frege’s explicit definition of the ancestral into

schematic logic. A brief review will reveal, however, that the methods used presume only that the formula

defining the ancestral isΠ1
1: They presume nothing about what formula it is. We can thus generalize that

construction.
23 Of course it matters that theycanbe resolved. I’ll leave that as an exercise. One nice thing to do is add structural rules that

allow a hypothesis freely to be converted to a supposition and a supposition to be converted to a hypothesis so long as none of its
free variables are free in any of the suppositions on which it depends.

The distinction I am drawing here is very close to the distinction between rules of inference and rules of deduction that I drew,
for an ostensibly quite different purpose, in (Heck, 1998). In fact, however, the formal situation is almost identical, since modal
formula are there interpreted as if they were always proceeded by a universal quantifier over accessible worlds. The techniques
developed there can therefore be used here.
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Consider first the simplest case. Letφx(Fx, y) be an arbitrary formula containing no free variables other

than those displayed. In standard second-order logic, we can explicitly define a new predicateAφ as follows:

Aφ(y) ≡ ∀Fφx(Fx, y).

The definition is licensed, in effect, byΠ1
1 comprehension, which guarantees thatAφ exists. But the trick

used with the ancestral can also be used here. We have an introduction rule, (Aφ+):

φx(Fx, y) ` Aφ(y),

whereF again may not be free in any premises on whichφx(Fx, y) depends, and an elimination rule,

(Aφ−):

Aφ(y) ` φx(Fx, y).

In effect, these rules defineAφ(y) as equivalent to∀Fφx(Fx, y) without using an explicit universal quanti-

fier to do so. The extension of the new predicateAφ is then the set of all thosey such thatφx(Fx, y) is true

for every assignment to theF.

More generally, we allow more than one predicate variable to occur inφ; we allow the predicate variables to

be of various adicities; and we allow additional free first-order variables, in which case what is defined is a re-

lation rather than just a predicate. So, in general,φmay be of the formφx1...xmax1≤i≤n(ki)
(F1(x1, . . . , xk1), . . . , Fn(x1, . . . , xkn), y1, . . . , ym)

and, simplifying notation, we introduce a new predicateAφ(y) subject to the rules:

φx(F , y) ` Aφ(y)

Aφ(y) ` φx(F , y)

It is a more serious question whether we wish to allow additional freesecond-ordervariables to occur inφ,

in which case these methods would allow us to define what Frege would have called a relation of ‘mixed

level’, subject to the rules:

φxy(Fx,Gy, z) ` Aφy(Gy, z)

Aφy(Gy, z) ` φxy(Fx,Gy, z)

To take this step would force an expansion of the language to allow predicate variables to occur as arguments

of predicates of mixed level. Such a step might reasonably be regarded as momentous or, at least, as

involving new ideas. Fortunately, we shall not need this extension here. I mention only because it is natural

and could allow one to motivate logics of greater stength than the ones we shall be considering.

Call what was just described thescheme of schematic definition. It allows us to transcribe what we would

normally regard as an explicit definition of a new predicate or relation in terms of aΠ1
1 formula into

schematic logic: If we can proveψx(Fx, a), then we can, in standard second-order logic, use universal

generalization to conclude that∀Fψx(Fx, a) and so thatAψ(a); if we haveAψ(a), then by definition,

∀Fψx(Fx, a) and so, by universal instantiation,ψx(Fx, a). But the explicit definition ofAψ(a) in terms of
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∀Fψx(Fx, a) simply mediates the transitions betweenψx(Fx, a) andAψ(a). It can be eliminated in favor

of an schematic definition ofAψ(a) in terms of those same transitions.

If we add the scheme of schematic definition to (minimal) SL, we thus get a system in which new pred-

icates co-extensional withΠ1
1 formulae can be introduced by schematic definition. Here again, however,

the scheme of schematic definition is, by itself, deductively very weak: To exploit its power, we need a

rule of substitution. We thus have three sorts of systems, depending upon the strength of the substitution

principle we assume. Call the system without substitutionminimal Arché logic(minimal AL). Predicative

Arché logiccontains a restricted substitution principle: The formula replacingF may not contain any of the

new predicatesAφ. Full Arché logicallows unrestricted substitution.24 These systems obviously include

minimal, predicative, and full schematic ancestral logic, respectively, and the logical strength of miminal,

predicative, and full AL should be close to that of second-order logic with no comprehension, predicative

comprehension, andΠ1
1 comprehension, respectively. But it should be equally clear that the language in

which these systems are formulated hasnothing likethe expressive power of a second-order language.

The axiom scheme of separation can be expressed in full AL by a single axiom. Letσx(Fx,w) be the

formula:

∀z∃y∀x(x ∈ y ≡ x ∈ z ∧ Fx) ∧ w = w.

Then the scheme of schematic definition gives us a new predicateAσ(w) subject to the rules:

∀z∃y∀x(x ∈ y ≡ x ∈ z ∧ Fx) ∧ w = w ` Aσ(w)

Aσ(w) ` ∀z∃y∀x(x ∈ y ≡ x ∈ z ∧ Fx) ∧ w = w

or equivalently:

∀z∃y∀x(x ∈ y ≡ x ∈ z ∧ Fx) ` ∀wAσ(w)

∀wAσ(w) ` ∀z∃y∀x(x ∈ y ≡ x ∈ z ∧ Fx)

So separation is expressed by the single sentence:∀wAσ(w). A similar technique plainly applies to any

axiom schema.25

The scheme of schematic definition also allows us to define new predicates that are co-extensional withΣ1
1

formulae. Letφx(Fx, a) be a formula. We want to define a new predicate that is equivalent to∃Fφx(Fx, a).
24 In full AL, the elimination rule (Aφ−) effectively takes the form

Aφ(a) ` φx(B(x), a),

whereB(x) is an arbitrary formula (subject to the usual restrictions). In predicative AL,B(x) is not permitted to contain new
predicates of the formAφ.

25 A more elegant way to proceed is to extend the scheme of schematic definition to allow a new zero-place predicate (i.e., a
sentential variable) to be defined in terms of a formulaφx(F1x, . . . , Fnx), in which case we have:

φx(F1x, . . . , Fnx) ` Aφ

Aφ ` φx(F1x, . . . , Fnx)

Then separation is expressed by the zero-place predicate thus defined when we takeφx(Fx) to be (Sep).
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But ∃Fφx(Fx, a) is equivalent to∀F¬φx(Fx, a), so we may use the scheme of schematic definition to

introduce a new predicateA¬φ, subject to the rules:

¬φx(Fx, a) ` A¬φ(a)

A¬φ(a) ` ¬φx(Fx, a)

SoA¬φ(a) is equivalent to∀F¬φx(Fx, a). We now regard¬A¬φ(a) as degeneratively of the formψx(Fx, a)
and introduce a new predicateA¬A¬φ

, which I shall write:Aφ, subject to the rules:

¬A¬φ(a) ` Aφ(a)

Aφ(a) ` ¬A¬φ(a)

So Aφ(a) is equivalent to∀F (¬A¬φ(a)), that is, to¬A¬φ(a), that is, to¬∀F¬φx(Fx, a) and so to

∃Fφx(Fx, a), as wanted.

This argument obviously depends upon our allowing predicates defined using the scheme of schematic

definition to appear in formulae used to define yet further new predicates using that same scheme. Formally

speaking, we could consider restricting the scheme so as not to allow such iteration. Such a restriction

would correspond to our not allowing free variables in the comprehension scheme. But this restriction has

no motivation in the context of this investigation. The scheme of schematic definition formalizes a certain

mode ofconcept-formation. Once one has used it to form a certain concept, one has that concept, and there

is simply no reason one cannot iterate the process of concept-formation in the way we have allowed.

That said, there is a more elegant way to define predicates that are equivalent toΣ1
1 formulae. As we have

seen, the scheme of schematic definition, as currently formulated, in effect characterizesAφ in terms of

introduction and elimination rules that mirror those for the universal quantifier that appears in its explicits

second-order definition. That suggets that we should characterizeAφ in terms of introduction and elimina-

tion rules that mirror those for the existential quantifier that appears inits explicit second-order definition.

So we may take the introduction rule forAφ, (Aφ+), to be:

φx(A(x), a) ` Aφ(a),

where, in this case, variables free inA(x) may be free in premises on whichφx(A(x), a) depends. In full

AL, A(x) may be any formula; in predicative AL, it may not contain schematically defined predicates; in

minimal AL, it must be an atomic formula.

The elimination rule, (Aφ−), is more complex, but only because the elimination rule for the existential

quantifier is itself more complex, involving as it does the discharge of an assumption. Suppose we have

derived a formulaB from formulae in some set∆ together withφx(A(x), a), where none of the free variables

occurring inA(x), other thanx itself—which is actually bound inφx(A(x), a)—occur free inB or in ∆.

Suppose further that we have derivedAφ(a) from the formulae in some setΓ. Then we may inferB,
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dischargingφx(A(x), a), so thatB depends only uponΓ and∆.26 Symbolically:

[φx(A(x), a)] ∆ Γ
...

...
...

B Aφ(a)
...

...

B

This rule simply parallels the relevant instance of the usual elimination rule for the second-order existential

quantifier, except that we have replaced∃Fφx(Fx, a) with Aφ(a). It is convenient to expand the scheme

of schematic definition to allow schematic definitions of this form, too, since doing so adds no additional

strength to the logic.

I intend the term ‘scheme of schematic definition’ to be taken seriously: I propose to regard the introduction

and elimination rules (Aφ+) and (Aφ−) asdefiningthe new predicateAφ and therefore regard the rules

themselves as effectively self-justifying, since they are consequences of (because components of) a defini-

tion. In particular, then, I am proposing that we should regard (*+) and (*–)27 as defining the ancestral.

Perhaps that would be a reason to regard the ancestral as a logical notion and to regard these rules are logical

rules. I am not sure, because I am not sure what the word ‘logical’ is supposed to mean here.28 But the

crucial issue for the neo-logicist is epistemological. The proof of Frege’s Theorem makes heavy use of the

ancestral and of inferences of the sort (*+) and (*–) describe. A neo-logicist must therefore show that she

is entitled both to a grasp of the concept of the ancestral and to an appreciation of the validity of (*+) and

(*–), and this entitlement must be epistemologically innocent in the sense that it does not itself import epis-

temological presuppositions that undermine the neo-logicist project: It must not, for example, presuppose a

grasp of the concept of finitude, and it is a common complaint that our grasp of the concept of the ancestral

presupposes precisely that. But if we regard the ancestral as schematically defined by (*+) and (*–), we may

dismiss this complaint.

To be sure, one cannot simply introduce a new expression and stipulate that it should be subject to whatever

introduction and elimination rules one wishes: Inconsistency threatens, as Arthur Prior famously showed

(1960). A complete defense of the position I am developing here would thus have to contain an answer to

the question when such stipulations are legitimate,29 and to many others besides. But my purpose here is

more modest. I am trying to argue that a certain position is available and worth considering. Whether it is

true is a question for another day.

26 If one wants to make the distinction between suppositions and hypotheses here, thenφx(A(x), a) must be a supposition.
27 In schematic ancestral logic, * is an operator, and so its logic can be characterized by the pair of rules (*+) and (*-). In Arché

logic, there is no such operator. Rather, we have to define the ancestral of each relation separately, using the scheme of schematic
definition. But this point does not affect the present discussion, so I shall ignore it.

28 At the end of his life, George Boolos claimed no longer to understand the question whether second-order logic is logic, stated
so baldly.

29 For some recent discussion, see (Hale and Wright, 2000).
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6 Frege’s Theorem

If we are to prove Frege’s Theorem in some form of schematic logic, we must be able to formalize HP

in schematic logic. It is quite easy to do so. HP is, of course, neither a definition nor an instance of

comprehension, but the techniques developed above may nonetheless be applied to it: We may represent HP

as a pair of rules. LetFx ≈Ryzxyz Gx abbreviate:

∀x∀y∀z∀w(Rxy ∧Rzw → x = z ≡ y = w) ∧ ∀x(Fx→ ∃y(Rxy ∧Gy)) ∧ ∀y(Gy → ∃x(Rxy ∧ Fx)),

so thatFx ≈Ryzxyz Gx says:Rcorrelates theFs one-one with theGs. Then the introduction rule (N+) is easy

enough to state:

Fx ≈Rxyxyz Gx ` Nx : Fx = Nx : Gx

The elimination rule (N–) is more complicated, but it simply parallels (Aφ−):

∆ [Fx ≈Rxyxyz Gx] Γ
...

...
...

B Nx : Fx = Nx : Gx
...

...

B

That is: If we have derived a formulaB from assumptions in some set∆ together with the assumption that

Fx ≈Rxyxyz Gx and we have derivedNx : Fx = Nx : Gx from the assumptions in some setΓ (with R free

in neither∆ nor B), then we may inferB, dischargingFx ≈Rxyxyz Gx. Arché arithmeticis full Arché logic

plus these two rules.

I should emphasize before continuing that I amnot claiming that (N+) and (N–) schematically define the

cardinality operator. I am not even claiming that the possibility of formulating HP in schematic logic should

do anything to ease any concerns one might have had about its epistemological status. My point here

concerns only the logic needed for the proof of Frege’s Theorem.

Frege’s definitions of arithmetical notions can all be formalized in Arché arithmetic. Zero may be defined

in the usual way:

0 = Nx : x 6= x

Frege’s definition of predecession becomes an schematic definition of a new relation-symbolP subject to

the rules (P+):

∃y[Nx : Gx = b ∧Gy ∧Nx : (Gx ∧ x 6= y) = a] ` Pab
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and (P–):
∃y[Nx : Gx = b ∧Gy ∧Nx : (Gx ∧ x 6= y) = a] ∆ Γ

...
...

...

B Pab
...

...

B

As usual,G must not be free in∆ or in B. The weak ancestral of this relation is schematically defined as

subject to the two rules:

(P∗+) ∀x(Pax→ Fx) ∧ ∀x∀y(Fx ∧ Pxy → Fy) → Fb ` P ∗ab

(P∗ −) P ∗ab ` ∀x(Pax→ Fx) ∧ ∀x∀y(Fx ∧ Pxy → Fy) → Fb,

subject to the usual restrictions. The definition of the concept of natural number is then:

Nn ≡ P ∗0n ∨ 0 = n.

Frege’s proofs of axioms of arithmetic can then be formalized straightforwardly.

We may take the axioms of arithmetic to be as follows:30

1. N0
2. Nx ∧ Pxy → Ny
3. ∀x∀y∀z(Nx ∧ Pxy ∧ Pxz → y = z)
4. ∀x∀y∀z(Nx ∧ Ny ∧ Pxz ∧ Pyz → x = y)
5. ¬∃x(Nx ∧ Px0)
6. ∀x(Nx→ ∃x(Pxy))
7. A(0) ∧ ∀x∀y(Nx ∧A(x) ∧ Pxy → A(y)) → ∀x(Nx→ A(x))

For convenience, induction has been formulated as a schema. As we saw above, this can be avoided, but let

us work with the schema, for simplicity.31

As in Frege arithmetic—second-order logic plus HP—axioms (1) and (2) follow easily from the definition

of N: (1) is immediate, and (2) follows from the transitivity of the ancestral. The proofs of axioms (3), (4),

and (5) in Frege arithmetic all appeal to HP, but they use only predicative comprehension and so are easily

formalized in Arché arithmetic.
30 Arithmetic and multiplication can be defined using the scheme of schematic definition, so we need no special axioms governing

them.
31 Consider the formula:F0∧∀x∀y(Nx∧Fx∧Pxy → Fy) → Fa. The scheme of schematic definition yields a new predicate

Sa subject to the two rules:
F0 ∧ ∀x∀y(Nx ∧ Fx ∧ Pxy → Fy) → Fa ` Sa

Sa ` F0 ∧ ∀x∀y(Nx ∧ Fx ∧ Pxy → Fy) → Fa

Then induction is:∀x(Nx → Sx).
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Axiom (7) is stronger than what the definition of the ancestral by itself delivers. Simple manipulations give

us:

A(0) ∧ ∀x∀y(A(x) ∧ Pxy → A(y)) → ∀x(Nx→ A(x)).

But (7) is stronger, since the second conjunct of its antecedent is weaker in virtue of its containing the

conjunctNx in its antecedent. But the instances of (7) can be proven, as usual, by induction onNξ∧A(ξ).32

Axiom (6) can be derived from axioms (3), (4), and (5), using only the following very weak consequence of

HP (Boolos, 1998d):

(Log) ∀x(Fx ≡ Gx) ` Nx : Fx = Gx.

The proof uses onlyΠ1
1 comprehension, so it can be formalized in full Arché logic. See the appendix for the

details.

A form of Frege’s Theorem can thus be proven in Arché arithmetic. Exactly how strong the resulting

fragment of second-order arithmetic is, I do not know. It is a natural conjuecture that it is equivalent to

second-order arithmetic withΠ1
1 comprehension.33 But, at the very least, it is certainly stronger than first-

order PA. The explicit definition of satisfaction for the language of first-order arithmetic isΠ1
1, so it can

be converted into an schematic definition in Arché arithmetic. The usual induction will then establish the

consistency of first-order PA, so Arché arithmetic is certainly a non-conservative extension of first-order PA.

7 Philosophical Considerations

A close examination of the proofs in the appendix will show that, if one regards predecession as primitive

and subject to the rules (P+) and (P–), as suggested in section 2, then Frege’s Theorem can be proven in

full schematic ancestral logic. If one regards the ancestral too as primitive and subject to the rules (*+)

and (*–), then Frege’s Theorem can be proven inpredicativeschematic ancestral logic. Predicative systems

are generally regarded as epistemologically innocent. So if both predecession and the ancestral could be

regarded as primitive, the mentioned rules being analytic of these notions, the logic needed for the proof of

Frege’s Theorem would be epistemologically innocent.

But the question which notions are primitive does not seem to me to be the right question to ask here: It is

too slippery. It is better, I think, to regard both predecession and its ancestral as defined by means of the

scheme of schematic definition and to regard (P+), (P–), (P*+), and (P*–) as analytic on the ground that they

are consequences of, because components of, those definitions. The proof of Frege’s Theorem, in that case,

needs full Arché logic. In particular, the proof needs the unrestricted rule of substitution. A philosopher

with principled concerns about impredicativity might therefore be tempted to say—and might, indeed, long

32 Even if we had convinced ourselves thatNξ could be taken as primitive, this argument, formalized in second-order logic, would
still needΠ1

1 comprehension. That is another reason one should not expect to get by with much less if one is trying to derive the
axioms of PA from HP. As it happens, however, if one is willing to forego induction and interpret a weaker theory, such as Robinson
arithmetic, then one can do so in predicative second-order logic: See (Heck, 2007).

33 Is there a natural extension of Arché arithmetic that admits∆1
2 comprehension? that is, one that is equivalent to predicative

analysis?
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have been wanting to say—that, however amusing the foregoing may be, it is largely beside the point if

the question at issue is whether the logic required for the proof of Frege’s Theorem is epistemologically

innocent. The unrestricted substitution rule is impredicative, and the only question, really, was where the

impredicativity would ultimately surface. The bump has been pushed around a fair bit, but the rug is no

flatter now than it was before.

I disagree. The scheme of schematic definition allows us to introduce a new predicateAφ subject to the

rules:

(Aφ+) φx(Fx, a) ` Aφ(a)

(Aφ−) Aφ(a) ` φx(Fx, a)

in the presence of the unrestricted substitution rule, the elimination rule is equivalent to:

(Aφsub) Aφ(a) ` φx(B(x), a),

whereB(x) is now a formula rather than a variable. In particular, in the case of the ancestral, the elimination

rule is equivalent, in the presence of unrestricted substitution, to:

(φ ∗ sub) φ∗ab ` ∀x(φax→ B(x)) ∧ ∀x∀y(B(x) ∧ φxy → B(y)) → B(b).

Such a rule can be understood in two ways.34 One way takes the set of formulaeB(x) that can appear in

the rule to be determined by reference to some fixed language. That is how axiom schemata, such as the

induction scheme in PA:

A(0) ∧ ∀x(A(x) → A(Sx)) → ∀xA(x),

are usually understood. The induction scheme is usually regarded as abbreviating an infinite list of axioms,

one for each formula of the language of arithmetic. When we consider expansions of the language of PA,

then—say, the result of adding a truth-predicateT—that expansion does not, in itself, result in any new

axioms’ being added to the original theory. The sentence

T0 ∧ ∀x(Tx→ T (Sx)) → ∀xTx,

in particular, and other sentences containingT, do not automatically become axioms of the new theory,

though such sentences do have the form of induction axioms. That is why adding a truth-predicate to PA,

and even adding the Tarskian clauses for the truth-predicate, yields a conservative extension: One can’t do

much with the truth-predicate if it doesn’t occur in the induction axioms.

Formally, of course, one can proceed how one likes, but this way of thinking of the induction scheme is

not obviously best. Even if our theory of arithmetic is formulated in a first-order language, one would

have thought the induction scheme should be regarded as one thatdoes, as it were, automatically import

34 See (Feferman, 1991) for discussion of, and applications of, this distinction. Regarding Feferman’s historical remarks in§1.5,
it is perhaps worth noting that the first accurate formulation of the sort of substitution rule that is needed here is due to Frege: See
Rule 9 in section 48 ofGrundgesetze. As Feferman notes, citing Church, such a rule is missing fromBegriffsschrift.
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new formulae of the appropriate form into our theory as our language expands. In ordinary, everyday

mathematics, we do not so much as ask, as our language expands, whether the new instances of induction

that become available should be accepted as true. To regard the induction scheme in this way, then, is to

regard it as expressing an open-ended commitment to the truth of all sentences of a certain form, both those

we can presently formulate and those we cannot. The rule (φ ∗ sub) is to be understood in this way, too: It

expresses an open-ended commitment to the validity of all inferences of a certain form.35

The unrestricted substitution rule thus expresses the open-ended nature of the commitments we undertake

when we schematically define a new predicatevia an instance of the scheme of schematic definition. And

that, simply, is how the scheme is intended to be understood. One whose understanding of the ancestral is

completely constituted by her grasp of the rules (φ∗+) and (φ∗-) would, it seems to me, be quite surprised

to hear that these rules do not license the sort of inference required for the proof of theorem (124) of

Begriffsschrift. I am not saying that it would beincoherentto refuse to accept that inference. I am simply

saying that it would not be a natural reaction.

One might object that this justification of the substitution rule, if it is defensible at all, ought to apply just

as well in the context of full second-order logic. In fact, I think it does so extend. In the case of second-

order logic, however, there is another and more fundamental problem with which we must contend: We

must explain the second-order quantifiers. Absent such an explanation, we do not so much as understand

second-order languages, and the question how the substitution rule should be justified doesn’t arise. Now, to

understand the second-order universal quantifier, one must understand what it means to say thatall concepts

are thus-and-so. But to understand that sort of claim, or so it is often argued, one must have a conception

of what the second-order domain comprises. One must, in particular, have a conception of (something

essentially equivalent to) the full power-set of the first-order domain, and many arguments have been offered

that purport to show that we simply do not have a definite conception of℘(ω). It is not my purpose here

to evaluate such arguments. Maybe they work, and maybe they do not. My purpose here is to identify an

epistemologically relevant difference between second-order logic and Arché logic. Here it is: Since there are

no second-order quantifiers in schematic languages, the problem of explaining the second-order quantifier

simply does not arise in that context.

One might object that the problem arises nonetheless. The thought would be that our understanding of the

introduction rule for the ancestral essentially involves just such a conception. How else are we to understand

∀x(φax→ Fx) ∧ ∀x∀y(Fx ∧ φxy → Fy) → Fb,

as it occurs in the premise of the rule (*+), except as involving a tacit initial second-order quantifer? Does it

not say, explicit quantifier or no, that all conceptsF that are thus-and-so are so-and-thus? Does understand-

ing that claim not require the disputed conception of the power-set? No, it does not. A better reading would

be: A concept that is thus-and-so is so-and-thus. What understanding this claim requires is not a capacity to

conceive ofall concepts but simply the capacity to conceive ofa concept: to conceive of an arbitrary con-

cept, if you like. The contrast here is entirely parallel to that between arithmetical claims likex+y = y+x,

35 I borrow the term ‘open-ended’ from Vann McGee (1997).
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involving only free variables, and claims involving explicit quantification over all natural numbers. Hilbert

famously argued that our understanding of claims of the former sort involves no conception of the totality of

all natural numbers, whereas claims of the latter sort do, and that there is therefore a significant conceptual

and epistemological difference between these cases. I am making a similar point about claims involving

only free second-order variables as opposed to claims that quantify over concepts.

But one might insist that, nonetheless, if we do not have a definite conception of the full power-set—if,

in particular, there is nothing in our understanding of free second-order variables that guarantees that they

range over the full power-set of the first-order domain—then the meanings of the predicates we introduce by

schematic definition will be radically underdetermined, at least. It was stipulated earlier thatAφ(a) is true

if, and only if,φx(Fx, a) is true for every assignment of a subset of the first-order domain toF. But why?

If we have no conception of the full power-set, why not take the domain of the second-order variables to be

smaller? Why not restrict it to the definable subsets of the domain? Surely none of the axioms and rules of

Arché logic require the second-order domain to contain every subset of the first-order domain.

Obviously, there is a technical point here that is incontrovertible: The existence of non-standard models is a

fact of mathematics, and a very useful one at that. But the philosophical significance of this technical point is

not so obvious. It seems to me that thereis something about the axioms and rules of Arché logic that requires

the second-order domain to beunrestricted, and that is the crucial word. The difference between the standard

model and the various non-standard models is to be found not in what the standard modelincludes but in

what non-standard modelsexclude: A non-standard model of necessity excludes certain concepts from the

domain of the second-order variables. That, however, is incompatible with the nature of the commitments we

undertake when we introduce a new predicate using the scheme of schematic definition. Those commitments

are themselvesunrestrictedin the sense that we accept no restriction upon what formulae may replaceB(x)
when we inferφx(B(x), a) from Aφ(a). One might be tempted to object that, if so, we must somehow

conceive of the totality of all such formulae in advance. But that would simply repeat the same error: No

such conception of the totality of all formulae is needed; what is needed is just the ability to conceive ofa

formula—an arbitrary formula, if you like.

It would not be unreasonable to claim that, at this point, we are essentially at stalemate, although both sides

have moves remaining. But that is enough for my purpose here. What I am trying to do is not to convince

the reader of any particular position. I am trying, rather, to convince the reader of theinterestof a certain

position, namely, the position that full Arché logic is epistemologically innocent in whatever way such

positions as the neo-logicist’s need logic to be. It is no part of my position that full second-order logic is not

epistemologically innocent in that sense. But it is my position that there isenough of a differencebetween

Arché logic and second-order logic that it would not be unreasonable to regard them as epistemologically

unequal in this same sense. I take myself to have accomplished that much. The resources deployed above in

the defense of full Arché logic against the predicativist skeptic are not resources that are obviously sufficient

to defend full second-order logic. Perhaps they can be built upon for that purpose. I don’t necessarily say

otherwise. But perhaps they cannot be.

The critical difference between Arché logic and second-order logic thus turns out to lie not so much in
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the logical principles that distinguish them but, rather, in the expressive power of the underlying languages.

What we have seen is not just that the full deductive strength of second-order logic is not needed for the proof

of Frege’s Theorem: That has been known for some time. What we have seen is that not all of the expressive

power of second-order languages is needed, either. Quine’s view (1986) was that second-order quantification

is not even a logicalnotion: If second-order variables range over sets, then second-order quantification is

quantification over sets, and second-order logic is set-theory in sheep’s clothing, quite independently of its

proof-theoretic strength. Even if one interprets second-order quantifiers in terms of plurals, as suggested by

George Boolos (1998e), however, one might have other reasons to suppose that plural quantifiers are non-

logical constants (see e.g. Resnik, 1988), perhaps reasons connected with the expressive power of plural

quantifiers. Again, it is no part of my view that plural quantifiers arenot logical constants. What I am

claiming is that the question whether axioms for arithmetic can be derived, purely logically, from HP does

not depend upon how that issue might be resolved: The language of Arché arithmetic has a stronger claim

to be a logical language than the language of second-order logic does.36

Appendix

Here, as above, I am not including all the steps that would be necessary to make the argument completely

formal. In particular, standard first-order moves will be repressed for the most part and only briefly indicated

where they are not. My intention is simply to make it clear that these results can be proven in the relevant

systems.

Proof of Begriffsschrift , Theorem (124)

The proof is in full schematic ancestral logic. It could also, of course, be carried out in full Arché logic.

36 This material was presented to the Mathematics Workshop at Arché, the AHRC Research Centre for the Philosophy of Logic,
Language, Mathematics and Mind, at the University of St Andrews, in February 2005. Thanks to Arché for its support, which is
much appreciated, and to Crispin Wright for arranging another visit. I thank everyone who attended for their comments, but special
gratitude is due to Crispin and to Stewart Shapiro for their enthusiasm about this material, which is what convinced me to write it
down.

Earlier versions of these ideas were presented in a graduate seminar given at Harvard University in Fall 2004. Thanks to the
members of that seminar for their reaction. Thanks too to Øystein Linnebo for his comments on an early draft.

It should be obvious that my work owes a great deal to Crispin’s. That is true not only of my work on Frege’s philosophy of
mathematics, but also of my work on vagueness and of my work on philosophy of language. But my debt to him is far greater than
that. Although I first met Crispin in the summer of 1993, at a conference on philosophy of mathematics organized by Matthias
Schirn, the proceedings of which were published as (Schirn, 1998), he had already been generous with his time, discussing philos-
ophy over email with a distant graduate student. Since then, I have many times had the privilege of spending time with Crispin,
whether in St Andrews or elsewhere, discussing philosophy, football, and our families, and I am honored now to call him a friend.
He has been a reliable supporter, both of my work and of me, so much so that I am quite certain that my career would have been far
different if not for his presence in my life.

Thank you, Crispin, for everything. And long live Arché.
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[1] (1) φ∗ab Premise

[2] (2) φac Premise

[3] (3) ∀x∀y∀z(φxy ∧ φxz → y = z) Premise

[1] (4) ∀x(φax→ Fx) ∧ ∀x∀y(Fx ∧ φxy → Fy) → Fb (1, ∗−)
[1] (5) ∀x(φax→ φ∗=cx) ∧ ∀x∀y(φ∗=cx ∧ φxy → φ∗=cy) → φ∗=cb (4, subst)
[6] (6) φax Premise

[2, 3, 6] (7) x = c (2, 3, 6)
[2, 3, 6] (8) φ∗=cx defφ∗=

[2, 3] (9) ∀x(φax→ φ∗=cx) (6, 7)
[] (10) ∀x∀y(φ∗=cx ∧ φxy → φ∗=cy) transitivity

[1, 2, 3] (11) φ∗=cb (5, 9, 10)

The substitution rule, applied at line (5), is essential to this proof, which therefore collapses in minimal

schematic ancestral logic. Since the substituted formula contains *, it cannot be replicated in predicative

schematic ancestral logic either.

Proof of Axiom (6)

This proof is in full schematic ancestral logic plus the following restricted form of HP, which George Boolos

dubbedLog:

∀x(Fx ≡ Gx) → Nx : Fx = Nx : Gx

We will need the ‘roll-back theorem’:P ∗ab → ∃y(P ∗=ay ∧ Pyb). Its proof is straightforward. We will

show that axiom (6) follows from the other axioms of arithmetic, to which we freely appeal.

We start by proving Theorem (145) ofGrundgesetze: P ∗=0x→ ¬P ∗xx.

[] (1) P ∗=0n ∧ ¬P ∗00 ∧ ∀x∀z(P ∗=0x ∧ ¬P ∗xx ∧ Pxz → ¬P ∗zz) → ¬P ∗nn Axiom (7)

[] (2) P ∗00 → ∃y(P ∗=0y ∧ Py0) roll-back

[] (3) ¬∃y(P ∗=0y ∧ Py0) Axiom (5)

[] (4) ¬P ∗00 (2, 3)
[5] (5) P ∗=0x ∧ ¬P ∗xx ∧ Pxz Premise

[6] (6) P ∗zz Premise

[6] (7) ∃y(P ∗=zy ∧ Pyz) roll-back

[8] (8) P ∗=zy ∧ Pyz Premise

[5, 8] (9) x = y 5, 8,Axiom (4)

[5, 8] (10) Pxz ∧ P ∗=zx 5, 8, 9
[5, 8] (11) P ∗xx 10, transitivity

[5, 6] (12) P ∗xx 11, [8]∃−
[5] (13) ¬P ∗zz 5, 12; [6]¬+
[] (14) ∀x∀z[P ∗=0x ∧ ¬P ∗xx ∧ Pxz → ¬P ∗zz] 13, [5] → +;∀+
[] (15) P ∗=0n→ ¬P ∗nn 1, 4, 14
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We now prove the existence of successor by proving:P ∗=0n → P (n,Nx : P ∗=xn). We shall need the

following simple fact twice:

Fa→ P [Nx : (Fx ∧ x 6= a), Nx : Fx].

That is Theorem 102 ofGrundgesetzeand shall be cited as such. It follows immediately from (P+).

[] (1) P ∗=0n ∧ P (0, Nx : P ∗=x0)∧
∀y∀z[P ∗=0y ∧ P (y,Nx : P ∗=xy) ∧ Pyz → P (z,Nx : P ∗=xz)] →
P (n,Nx : P ∗=xn) Axiom (7)

[] (2) P ∗=00 → P [Nx : (P ∗=x0 ∧ x 6= 0), P ∗=x0) Gg 102

[] (3) P [Nx : (P ∗=x0 ∧ x 6= 0), P ∗=x0) 2,defP ∗=

[] (4) P ∗=x0 ∧ x 6= 0 → P ∗x0 defP ∗=

[] (5) P ∗x0 → ∃u(P ∗=0u ∧ Pu0) roll-back

[] (6) ¬∃u(P ∗=0u ∧ Pu0) Axiom (5)

[] (7) ¬(P ∗=x0 ∧ x 6= 0) 4, 5, 6
[] (8) ∀x[(P ∗=x0 ∧ x 6= 0) ≡ x 6= x] 7∀+
[] (9) Nx : (P ∗=x0 ∧ x 6= 0) = Nx : (x 6= x) 8,Log

[] (10) Nx : (P ∗=x0 ∧ x 6= 0) = 0 9,def 0

[] (11) P (0, Nx : Nx : P ∗=x0) 9, 10

So that establishes the basis step. We now prove the induction step to complete the proof.

[12] (12) P ∗=0y ∧ P (y,Nx : P ∗=xy) ∧ Pyz Premise

[] (13) P ∗=zz → P [Nx : (P ∗=xz ∧ x 6= z), Nx : P ∗=xz] Gg 102

[] (14) P [Nx : (P ∗=xz ∧ x 6= z), Nx : P ∗=xz] 13,defP ∗=

[12] (15) z = Nx : P ∗=xy 12,Axiom (3)

[12] (16) Nx : (P ∗=xz ∧ x 6= z) = Nx : P ∗=xy → P (z,Nx : Nx : P ∗=xz) 14, 15
[12] (17) ∀x[(P ∗=xz ∧ x 6= z) ≡ P ∗=xy] →

Nx : (P ∗=xz ∧ x 6= z) = Nx : P ∗=xy Log

[12] (18) ∀x[(P ∗=xz ∧ x 6= z) ≡ P ∗=xy] → P (z,Nx : Nx : P ∗=xz) 16, 17

We now need only establish the antecedent of (18) to complete the proof. First, right-to-left:

[19] (19) P ∗=xy Premise

[19] (20) P ∗=xz 12, 19, transitivity

[21] (21) x = z Premise

[12, 21] (22) P ∗=xy ∧ Pyx 12, 19, 21
[12, 21] (23) P ∗=0y ∧ P ∗yy 12, 22, transitivity

[12] (24) x 6= z 23,Gg 145; [12]¬+
[12] (25) P ∗=xy → P ∗=xz ∧ x 6= z 20, 24; [19] → +

Now left-to-right:
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[26] (26) P ∗=xz ∧ x 6= z Premise

[26] (27) P ∗xz defP ∗=

[26] (28) ∃u(P ∗=xu ∧ Puz) 27, roll-back

[29] (29) P ∗=xu ∧ Puz Premise

[12, 29] (30) u = y 12, 29,Axiom (4)

[12, 29] (31) P ∗=xy 29, 30
[12, 26] (32) P ∗=xy 28, 31; [29]∃−
[12] (33) P ∗=xz ∧ x 6= z → P ∗=xy 32, [26] → +
[12] (34) ∀x[(P ∗=xz ∧ x 6= z) ≡ P ∗=xy] 25, 33,∀+
[12] (35) P (z,Nx : Nx : P ∗=xz) 18, 34
[] (36) ∀y∀z[P ∗=0y ∧ P (y,Nx : Nx : P ∗=xy) ∧ Pyz → P (z,Nx : Nx : P ∗=xz)] 35, [12] → +,∀+

That completes the proof of the induction step. So we may conclude:

[] (37) P ∗=0n→ P (n,Nx : P ∗=xn) 1, 11, 36
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