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Some years ago, Shapiro (1998) and Ketland (1999) independently
developed what is now known as the ‘conservativeness argument’ against
deflationary views of truth. Attempting to understand in what sense a
deflationary truth-predicate is ‘insubstantial’, they proposed that the
principles concerning truth that a deflationist accepts should conser-
vatively extend whatever non-semantic theories the deflationist also
accepts: No ‘insubstantial’ theory of truth ought to allow us to prove
things about non-semantic matters that we cannot prove without it.
In particular, the thought was, adding principles about truth to Peano
Arithmetic (PA) should yield a conservative extension of PA. And, indeed,
if we add only what Horwich (1990) called a ‘minimal’ theory of truth,
consisting simply of the T-sentences1 for the language of arithmetic, then
the result is indeed a conservative extension of PA.

By the time Shapiro and Ketland were writing, however, Gupta (1993)
had made it clear that the minimal theory of truth is too weak to do the
work that even a deflationist needs truth to do. Generalizations about
truth, such as

(1) A conjunction is true iff both of its conjuncts are true.

are going to be required, as well. But if we add all of the various prin-
ciples of that sort to PA—that is, if we add a theory of truth of the kind
Tarski (1958) showed us how to formulate—then the result is not a con-
servative extension of PA, since the resulting theory proves that PA is
consistent, via the following sort of argument: Every axiom of PA is true;
the rules of inference preserve truth; so every theorem of PA is true;
but there is at least one sentence that is not true, e.g., 0 = 1,2 which is
therefore not a theorem of PA; so PA is consistent.

1By a T-sentence, I of course mean one of the form: pAq is true iff A.
2I shall omit quotes where they are not absolutely necessary, so as not to clutter the

exposition.
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Shapiro’s version of the conservativeness argument attracted a direct
response from Field, who had by then emerged as one of the leaders of
the deflationist uprising. Field (1999) notes that, if we only add ‘composi-
tional principles’ like (1) to PA, then the result is again a conservative ex-
tension (Parsons, 1974, pp. 5–7). It is only if we also extend the induction
scheme to permit semantic vocabulary that we get a non-conservative
extension (see also Halbach, 2001b). And so Field writes:

Since truth can be added in ways that produce a conservative
extension. . . , there is no need to disagree with Shapiro when
he says that “conservativeness is essential to deflationism”. . . .
Shapiro’s position, however, is that a deflationist must hold
that adding ‘true’ to number theory in the full-blooded way
that involves [extending the induction axioms also] produces
a conservative extension. (Field, 1999, p. 536)

Field then goes on to argue that a deflationist need hold no such thing.
At most, the deflationist should hold that the principles about truth that
‘flow from its disquotational nature’ are conservative over number theory;
she need not hold that all principles about truth are conservative. But,
Field claims, the induction principles flow not from the nature of truth,
but from the nature of the natural numbers. They are not semantical but
arithmetical in character, so whether adding them yields a conservative
extension is irrelevant to the issue at hand.

In what seems to me to be the crucial passage, Field quotes Shapiro
(1998, p. 499) as asking: “How thin can the notion of arithmetical truth
be if, by invoking it, we can learn more about the natural numbers?”
Field then replies:

. . . [T]he way in which we “learn more about the natural num-
bers by invoking truth” is that in having that notion we can
rigorously formulate a more powerful arithmetical theory
than we could rigorously formulate before. There is nothing
very special about truth here: using any other notion not
expressible in the original language we can get new instances
of induction, and in many cases these lead to nonconservative
extensions. (Field, 1999, p. 536)

This is right, so far as it goes, but it is also extremely misleading.
What does Field mean by “using [a] notion not expressible in the

original language”? The natural way to read him would be as talking
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about definability: about what happens if we add a new predicate whose
extension is not definable in the original language. In that case, Field
would be saying something like this:

If we add a new predicate whose extension is not definable
in the original language, then we will get new instances of
induction, which may lead to new theorems in the original
language.

That is of course right. We will get new instances of induction that may
lead to new theorems. But the case of the truth-predicate is precisely
not one of those cases. Tarski’s Theorem tells us that the set of truths of
the language of PA is not definable in the language of arithmetic. But
if we add a truth-predicate T(x) to the language of PA and extend PA
by adding the T-sentences, then that is enough to guarantee that T(x)
defines a set not definable in the original language, namely: the set
of true sentences of the language of arithmetic. But the result is still
a conservative extension of PA even if we extend induction. It follows
that the non-conservativity result is not due just to the presence of “new
instances of induction” formulated using a “notion not expressible in the
original language”. It is also necessary that we have a fully compositional
truth-theory, and not just the T-sentences.

So, again: It is only if we both add a compositional truth-theory to
PA and extend the induction axioms to permit semantic vocabulary that
we get a non-conservative extension. Neither is sufficient by itself. That
makes the dialectical situation complicated. Field wants to allow that
compositional principles about truth ‘flow from truth’s disquotational
nature’ and so should be conservative;3 he can do so by blaming the non-
conservativity result on the extension of induction. Shapiro, by contrast,
blames the non-conservativity result on the compositional principles,
because he thinks we are independently committed to induction for any
well-defined predicate we can understand. Are we, then, at a standoff?

Not necessarily. As we shall see, the situation is not entirely sym-
metrical. Adding a compositional truth-theory does yield a conservative
extension if we do not extend the induction axioms, but the resulting the-
ory is, in most cases, still logically stronger than the original theory. On
the other hand, if we just add the T-sentences, then, in almost all cases,
the resulting theory is, in a well-defined sense, not logically stronger than

3Field (2005) has argued that the compositional principles follow from the T-scheme,
if it is understood in the right way. I criticize this claim elsewhere (Heck, 2014).
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the original theory even if we do extend the induction axioms. And that
already seems to me to be out of the spirit of deflationism. Deflationists
routinely deride compositional principles like (1) as trivial (Field, 2005,
p. 24) and of “no interest in their own right” (Field, 1994, p. 269). In
fact, however, such principles, taken together, have significant logical
strength, independent of the extension of the induction axioms, and for
reasons that are closely connected with the sort of consistency proof on
which the conservativeness argument was originally based.

In the remainder of this paper, the results to which I have just alluded
will be stated precisely and, in some cases, proved.4 In Section 1, I shall
present the background material from logic that is necessary for the
rest of the discussion. In Section 2, I shall present a first form of the
results. In Section 3, we shall encounter two natural worries about the
significance of those results. In Section 4, I will present the results in
a different form, one that should assuage such concerns. There is a
different worry about that form of the results, however, which we shall
discuss in Section 5. I shall close, in Section 6, by returning to the
philosophical issues we have just been discussing and explaining how I
think the technical results presented bear upon them.

1 Preliminaries

In an effort to make what follows as widely accessible as possible, I will
first present a brief overview of the machinery from logic that we will be
using.

The theories we will be discussing will all be recursively axiomatized.
And since we will be discussing consistency statements, we need, for
reasons famously made clear by Feferman (1960), to think of theories
intensionally: not as sets of theorems, nor even as sets of axioms, but as
particular presentations of sets of axioms. Officially, we identify a theory
with a formula that is true of (the Gödel numbers of) its axioms. Where
we are dealing with finitely axiomatized theories, we shall assume that
their axioms as presented in the simplest possible way: as a list or, if you
prefer, a disjunction.

A theory is ‘stated in’ a language. The languages in which we’ll
be interested here are first-order languages, constructed from terms,
function-symbols, and predicate-letters in the usual way. These lan-
guages are assumed to be finite, in the sense that they have only finitely

4Results not proven here are proven in a companion paper (Heck, 2015).
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many atomic expressions. It is convenient to identify a language with
the set of its atomic expressions, together with some indication of their
logical type, that is, with what is sometimes called the ‘signature’ of the
language.

1.1 Interpretatability

There are a number of ways of comparing the logical strength of theories.
If the theories are stated in the same language, then the obvious question
is whether one proves all the results the other proves. Comparison is
more difficult when the theories are stated in different languages. In
that case, the theories will trivially prove different theorems: If A is
in the language of the one but not the other, then pA ∨ ¬Aq will be a
theorem of the one but not of the other.

If the language of one theory contains that of the other, then one way
to compare them is to ask if the first is a ‘conservative extension’ of the
second, that is, whether the theory in the extended language proves any
new theorems that can be stated in the original language.5 But even
this fails if the theories are not so related. In that case, the established
method of comparison uses the notion of interpretation, which was first
explored in a systematic way by Tarski (1953), although the basic idea is
much older.

Let theories B (for ‘base’) and T (for ‘target’) be given, stated in
languages LB and LT , respectively. A relative interpretation6 of T in
B consists of two parts: a translation of LT into LB, and proofs in B of
the translations of the axioms of T . The translation is compositional,
in the sense that the only thing we actually need to do is define the
(non-logical) atomic expressions of LT in terms of those of LB and to
specify a ‘domain’ for the interpretation in terms of a formula δ(x) of LB.
This can then be extended to a complete translation of LT into LB in
the obvious way, where quantifiers are ‘relativized’ to δ(x): ∀x(φ(x)) is
translated as: ∀x(δ(x) → φ∗(x)), where φ∗(x) translates φ(x); ∃x(φ(x)),
as: ∃x(δ(x) ∧ φ∗(x)).7

5Strictly, T ′ conservatively extends T if (i) whenever T ` A, then T ′ ` A, and
(ii) whenever T ′ ` A and A is in the language of T , then T ` A.

6In fact, there are several different notions of interpretation. We shall only need this
one.

7As well as proofs of the translations of the axioms, we also need proofs of δ(t∗), for
each atomic term t of LT , and of the closure condition

∀x1 · · ·xn(δ(x1) ∧ · · · ∧ δ(xn)→ δ(f∗(x1, . . . , xn)))
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Note that interpretability is transitive and reflexive.
If T is relatively interpretable in B, then it follows that, if B is

consistent, so is T . If a contradiction could be derived from the axioms
of T , that proof could be mimicked in B: Just prove the translations of
the axioms of T used in the proof of the contradiction, then append a
modified version of the proof given in T . Indeed, quite generally, if `T A,
then `B A∗, where, again, the asterisk means: translation of. Moreover,
if B and T are not too terribly weak,8 then all of this will be provable
in B and T themselves. So, in particular, T will prove Con(B)→ Con(T )
and so, by the second incompleteness theorem, cannot prove Con(B).9 By
contrast, B perfectly well could prove Con(T ).

One way to give content to the idea that B is at least as strong as T is
therefore to take it to mean: T is relatively interpretable in B. That this
is a useful way to make the intuitive idea of relative strength rigorous
emerged only after a good deal of hard work, beginning with Tarski,
Mostowski, and Robinson (1953) and continuing through work by Fefer-
man (1960) to the present day. And, while the notion of interpretation is
particularly useful when we are dealing with theories stated in different
languages, we can still ask whether T can be interpreted in B even when
LT and LB are the same: The interpretation of the atomic vocabulary
does not have to be the identity function. So the notion is very general,
and it links up nicely with what we know about the strength of theories
from the second incompleteness theorem.

Now, a couple definitions that apply (sensibly) only to non-finitely
axiomatized theories.

Definition. T is locally interpretable in B if every finite subset of T is
intepretable in B.

Local interpretability obviously follows from ‘global’ interpretability, but
not conversely. Local interpretability is also transitive and reflexive, and

for each primitive function-symbol f , of however many places. We also need (if this isn’t
already covered) a proof that the domain is non-empty: ∃xδ(x). It is also convenient to
allow terms and function-symbols to be translated using descriptions, which can then be
eliminated as Russell taught. In that case, we need B to prove that the descriptions are
proper.

8Facts concerning interpretability can generally be verified in the theory known as
I∆0 + Ω1, which is itself interpretable in Q. Note that any theory this strong will be
subject to the second incompleteness theorem (Wilkie and Paris, 1987).

9As Feferman (1960, Theorem 5.9) famously showed, if B is reflexive, in the sense to
be mentioned shortly, then there are ways B′ of specifying the same set of axioms so that
B′ will prove Con(B′). We will ignore this complication here, however, and assume that
all our theories are specified in ‘nice’ ways.
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it relates to relative consistency just as global interpretability does: If T
is locally interpretable in B, then T is consistent if B is. The reason is
that any proof of a contradiction in T will use only finitely many of T ’s
axioms.

Definition. T is reflexive if T proves the consistency of each of its finite
sub-theories. I.e., for each finite U ⊆T , T ` Con(U).

A theory’s being reflexive can cause all sorts of unexpected phenomena
as regards the interpretability of other theories in it (Feferman, 1960).
What will matter most to us here is the fact that reflexive theories
collapse the distinction between local and global interpretability.10

Theorem (Orey’s Compactness Theorem). Suppose that T is locally
intepretable in B and that B is reflexive. Then T is globally interpretable
in B.

Since PA is reflexive (Mostowski, 1952), then, we can expect PA to be
something of a special case. Which, indeed, we shall see that it is.

1.2 Fragments of Arithmetic

We shall mostly be concerned here with PA and certain of its sub-theories.
Robinson arithmetic, or Q, is the theory whose axioms are the univer-

sal closures of the following eight formulae:

Q1 x 6= 0

Q2 Sx = Sy → x = y

Q3 x+ 0 = x

Q4 x+ Sy = S(x+ y)

Q5 x× 0 = 0

Q6 x× Sy = (x× y) + x

Q7 x 6= 0→ ∃y(x = Sy)

Q8 x < y ≡ ∃z(y = Sz + x)

10The proof of this result was first published by Feferman (1960, Theorem 6.9).
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The last is often considered a definition of <; it is convenient in the
present context to regard < as just part of the language. The language
of Q, {0,S,+,×, <}, is what we shall call ‘the language of arithmetic’ and
denote: A.

A formula is said to be ∆0 if all quantifiers contained in it are
‘bounded’, that is, if all of its quantified subformulae are of the form
∀x(x < t → · · · ) or ∃x(x < t ∧ · · · ), where t is a term.11 A formula
is Σ1 (resp., Π1) if it is of the form ∃x1 . . . ∃xn(φ) (resp., ∀x1 . . . ∀xn(φ)),
where φ is ∆0. A formula is Σn (resp., Πn) if it is ∃x1 . . . ∃xn(φ) (resp.,
∀x1 . . . ∀xn(φ)), where φ is Πn−1 (resp., Σn−1). A formula A is Σn in a
theory T if T proves A ≡ φ, for some Σn formula φ, and similarly for
other notions.

An important class of sub-theories of PA is characterized in terms of
the induction axioms these theories permit. PA itself is Q plus the full
induction scheme:

A(0) ∧ ∀x(A(x)→ A(Sx))→ ∀x(A(x))

where A(x) is any formula at all.12 The theory IΘ is Q plus induction
for formulae in the set Θ: So A(x) has to be in Θ. Thus, I∆0 is Q plus
induction for ∆0 formulae; IΣ1 is Q plus induction for Σ1 formulae; IΣn

is Q plus induction for Σn formulae. Note that IΣn, though not finitely
axiomatized, as I have described it, is finitely axiomatizable (Hájek and
Pudlák, 1993, pp. 77ff). We shall assume a finite axiomatization. It is
not known whether I∆0 is finitely axiomatizable.

I∆0 is in one sense clearly stronger than Q: It proves lots of important
generalizations about the natural numbers that Q does not, such as
x 6= Sx. But in another sense I∆0 is still very weak: It is interpretable
in Q.13 Another respect in which I∆0 is weak is that, although one can
define the relation y = 2x by means of a ∆0 formula exp(x, y), we cannot
prove in I∆0 that exponentiation is total: ∀x∃y(exp(x, y)). The obvious
proof uses induction on ∃y(exp(x, y)), which is Σ1. But for that very
reason, the totality of exponentiation is provable in IΣ1, as is the totality
of every other primitive recursive function. So IΣ1 is much stronger than
I∆0: Indeed, IΣ1 proves Con(I∆0).

11These are customarily abbreviated: ∀x < t(· · · ) and ∃x < t(· · · ).
12Q7 is then redundant and is typically omitted.
13That I∆0 is locally interpretable in Q was first proven by Nelson (1986). Wilkie

proved that it is globally interpretable in Q. The proof is discussed by both Hájek and
Pudlák (1993, pp. 366–70) and by Burgess (2005, §2.2).
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2 The Logical Strength of Compositional Prin-
ciples

In this section, I shall present and discuss the technical results to which
I alluded at the end of the introduction. First, we need to talk about
exactly what a theory of truth is.

2.1 Theories of Truth

Since the semantic axioms for the quantifiers, as Tarski formulated them,
make use of sequences of elements from the domain, we shall need a nice
theory of sequences if we’re to formalize theories of truth. Technically,
we’ll need our base theory to be sequential,14 which essentially means
that it can code (and decode) finite sequences of its elements. Q is not
sequential, but there are lots of sequential theories that are interpretable
in Q. For example, I∆0 is sequential, and it is interpretable in Q. We can
also just add a simple theory of sequences to Q to get a new theory, which
we might call Qseq, which is also interpretable in Q and is sequential by
construction. We’ll assume something like that done.

A compositional theory of truth consists of Tarski-style axioms for the
logical and non-logical vocabulary. The axioms for the logical part of the
language will always be the same:

(v) Denσ(vi, x) ≡ val(σ, i) = x, where vi is the ith variable

(=) Satσ(pt = uq) ≡ ∃x∃y[Denσ(t, x) ∧ Denσ(u, y) ∧ x = y]

(¬) Satσ(p¬Aq) ≡ ¬Satσ(A)

(∧) Satσ(pA ∧Bq) ≡ Satσ(A) ∧ Satσ(B)

(∀) Satσ(p∀vi(A(vi))q) ≡ ∀τ [τ
i∼ σ → Satσ(pA(vi)q)]

And similarly for the other logical constants. Here, ‘val(σ, i)’ means: the
value that σ assigns to the ith variable;15 ‘Denσ(t, x)’ means: t denotes x
with respect to the sequence σ; ‘Satσ(A)’ means: σ satisfies A; and ‘τ i∼ σ’

14Visser (2009) gives lots of information about sequentiality.
15What we would normally have, in the language of arithmetic, is a formula val(x, y, z)

meaning “z is the value x assigns to the yth variable”, rather than a functional expression
as in the text. But these complications affect nothing that follows and clutter the
exposition, so I shall ignore them.
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means that τ and σ agree on what they assign to each variable, with the
possible exception of vi, i.e.:

∀k < lh(σ)[k 6= i→ val(σ, k) = val(τ, k)]

where lh(σ) is the length of the sequence σ.
In the case of the language of arithmetic, we’ll also have these axioms

for the non-logical constants:

(0) Denσ(p0q, x) ≡ x = 0

(S) Denσ(pStq, x) ≡ ∃y(Denσ(t, y) ∧ y = Sx)

(+) Denσ(pt+ uq, x) ≡ ∃y∃z[Denσ(t, y) ∧ Denσ(u, z) ∧ x = y + z]

(×) Denσ(pt× uq, x) ≡ ∃y∃z[Denσ(t, y) ∧ Denσ(u, z) ∧ x = y × z]

(<) Satσ(pt < uq) ≡ ∃y∃z[Denσ(t, y) ∧ Denσ(u, z) ∧ y < z]

The pattern should be clear.16

Finally, then, we need to define the notion of truth itself:

(T) T(A) ≡ A is a sentence ∧ ∀σ(Satσ(A))

That is Tarski’s definition.
So that is what a theory of truth is. Now for some notation.

Definition. Let T be sequential. Then:

1. DT−[T ] is T plus all T-sentences for the language of T .

2. DS−[T ] is the result of adding not just the T-sentences for the
language of T but also the Sat-sentences, such as:

Satσ(v0 = v1) ≡ val(σ, 0) = val(σ, 1)

3. CT−[T ] is the theory that extends T by adding the truth-theoretic
axioms just described for the logical and non-logical vocabulary of
the language of T .

16It appears to have been Wang (1952) who first worked out the details of this sort of
construction.
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Here, ‘DT’ stands for: disquotational truth; ‘DS’ for: disquotational
satisfaction; ‘CT’, for: compositional truth.

Note that none of these theories extends any induction scheme that
might be present in T . There is no real chance, then, that even CT−[T ]
is going to prove the consistency of T . One might therefore suspect that
CT−[T ] would logically be no stronger than T . If so, then, as we shall
see, one would suspect wrongly, at least in general.

We shall also be interested in theories that do extend the induction
scheme.

Definition. Suppose that T is among I∆0, IΣn, and so forth. Then:

1. DT[T ] is like DT−[T ] except that it extends the induction scheme
to permit semantic vocabulary.

2. DS[T ] is like DS−[T ] except that it extends the induction scheme.

3. CT[T ] is the result of adding a fully compositional truth-theory and
extending the induction scheme.

To be frank, it is not at all obvious, in general, what it means to ‘extend
the induction scheme’. But in the cases in which we shall be interested,
it is obvious enough: One simply treats the semantic vocabulary as being
among the primitives of the language.17 So, e.g., ∃x(Denσ(t, x)) counts as
Σ1, and ∀x∃σ(Denσ(t, x)) counts as Π2.

2.2 Induction versus the Compositional Principles

We are now ready to state, and in some cases prove, the results I have
been promising. We’ll begin by exploring the various disquotational
theories.

As noted earlier, DT[PA] is a conservative extension of PA. Here are
some similar results, but stated in terms of interpretability.18

Theorem 2.1. DT−[T ] is locally interpretable in T .
17More formally, the theories in which we are interested can be characterized in terms

of the relativized arithmetical hierarchy (Hájek and Pudlák, 1993, pp. 81ff).
18There are some interesting questions still open here. Enayat has asked, for example,

whether DT−[T ] can ever be globally interpretable in T , if T is finitely axiomatized, and
the same sort of question arises for DT[T ], as well. If not, then that would show that
even just adding the T-sentences to a finitely axiomatized theory always increased the
theory’s logical strength (though, as we shall see, not nearly as much as adding a fully
compositional theory). See footnote 31 for some related remarks.
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Proof. Let S be a finite subset of the axioms of DT−[T ]. S will contain at
most finitely many T-sentences, say for A1, . . . , An. We interpret T(x) in
terms of a ‘list-like’ theory of truth, that is, as:

(x = pA1q ∧A1) ∨ · · · ∨ (x = pAnq ∧An)

With T(x) so defined, T will prove the T-sentences for A1, . . . , An. For
example, the translation of the T-sentence for A1 is:

(pA1q = pA1q ∧A1) ∨ · · · ∨ (pA1q = pAnq ∧An) ≡ A1

But the first conjunct of the first disjunct is provable, and the first
conjunct of the other disjuncts is refutable. So this is provably equivalent
to : A1 ≡ A1, and so is itself provable.

This result extends smoothly to the case of satisfaction.

Theorem 2.2. DS−[T ] is locally interpretable in T .

Proof. Essentially the same proof works as in the case of Theorem 2.1.
To interpret the Sat-sentences for A1(v1, v2) and A2(v2, v3), say, simply
define Satσ(x) as:

[x = pA1(v1, v2)q ∧A1(val(σ, 1), val(σ, 2))]∨
[x = pA2(v1, v2)q ∧A2(val(σ, 2), val(σ, 3))]

Then the translation of the Sat-sentence for A1(v1, v2) is:

[pA1(v1, v2)q = pA1(v1, v2)q ∧A1(val(σ, 1), val(σ, 2))]∨
[pA1(v1, v2)q = pA2(v1, v2)q ∧A2(val(σ, 2), val(σ, 3))] ≡

A1(val(σ, 1), val(σ, 2))

which is again provable.

Theorem 2.3. DT[PA] is interpretable in PA, and so is DS[PA].

Proof. We’ll prove the more inclusive case. Let S be a finite subset of
the axioms of DS[PA]. S will contain at most finitely many Sat-sentences.
We interpret Satσ(x) as in the previous proof. So those Sat-sentences are
all provable. But S may also contain some extended induction axioms.
However, under our definition of Satσ(x) , those induction axioms simply
become induction axioms of PA.

So DS[PA] is locally interpretable in PA. Orey’s Compactness Theorem
then implies that DS[PA] is globally interpretable in PA.
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The proof of Theorem 2.3 does not extend to sub-systems of PA such
as IΣ1. The reason is that the Ai may be of any complexity, and so,
if we have an induction axiom for some Σ1 formula A(x) containing
semantic vocabulary, the result of replacing T(x) or Satσ(x) by its ‘list-
like’ definition in A(x) may yield a formula that is not itself Σ1. But
there is a slightly more complicated proof that does work in the case of
truth.

Theorem 2.4. DT[IΣn] is locally interpretable in IΣn.

Proof. Let S be a finite subset of the axioms of DT[IΣn]. Then S contains
only finitely many T-sentences. For illustration, say these are for A and
B. As before, we interpret T(x) as: (x = pAq ∧ A) ∨ (x = pBq ∧ B). We
can then easily prove the T-sentences for A and B. But, of course, S may
also contain some extended induction axioms from DT[IΣn]. We need to
see that these are also going to be provable.

Suppose one of these induction axioms is the axiom for the formula
φ(x) ∨ T(sb(pψ(x)q, x)), where φ(x) is Σn but ψ(x) need not be. Here,
sb(y, x) means: The result of substituting the numeral for x for the sole
free variable in y. I choose this example because the threat is that the
ability to substitute in this way will allow us to get the induction axiom
for φ(x) ∨ ψ(x), which need not be Σn. But, in fact, the threat is idle,
because the induction axiom for the mentioned formula

[φ(0) ∨ T(sb(pψ(x)q, 0))]∧
∀x[φ(x) ∨ T(sb(pψ(x)q, x))→ φ(Sx) ∨ T(sb(pψ(x)q, Sx))]→

∀x(φ(x) ∨ T(sb(pψ(x)q, x)))

can be proven under our interpretation of T(x). I am claiming, that is,
that we can prove:[

φ(0) ∨ (sb(pψ(x)q, 0) = pAq ∧A) ∨ (sb(pψ(x)q, 0) = pBq ∧B)
]
∧

∀x
[
φ(x) ∨ (sb(pψ(x)q, x) = pAq ∧A) ∨ (sb(pψ(x)q, x) = pBq ∧B)→

φ(Sx) ∨ (sb(pψ(x)q, Sx) = pAq ∧A) ∨ (sb(pψ(x)q,Sx) = pBq ∧B)
]
→

∀x[φ(x) ∨ (sb(pψ(x)q, x) = pAq ∧A)) ∨ (sb(pψ(x)q, x) = pBq ∧B)] (2.1)

(Sorry about that.) The crucial point is that A and B are sentences, so
the quantifier ∀x cannot bind any variables in A or B . Hence, they can
be “pulled out” in the following way.
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Abbreviate (2.1) as Φ(A,B). Then it is logically equivalent to:

[A ∧B → Φ(>,>)] ∧ [A ∧ ¬B → Φ(>,⊥)]∧
[¬A ∧B → Φ(⊥,>)] ∧ [¬A ∧ ¬B → Φ(⊥,⊥)] (2.2)

where > is 0 = 0 and ⊥ is 0 6= 0. By completeness, this equivalence is
provable. Now Φ(>,>) is:

[φ(0) ∨ (sb(pψ(x)q, 0) = pAq ∧ >) ∨ φ(0) ∨ (sb(pψ(x)q, 0) = pBq ∧ >)]∧
∀x[φ(x) ∨ (sb(pψ(x)q, x) = pAq ∧ >) ∨ φ(x) ∨ (sb(pψ(x)q, x) = pBq ∧ >)→
φ(Sx) ∨ (sb(pψ(x)q,Sx) = pAq ∧ >) ∨ φ(Sx) ∨ (sb(pψ(x)q, Sx) = pBq ∧ >)]→
∀x[φ(x) ∨ (sb(pψ(x)q, x) = pAq ∧ >) ∨ φ(x) ∨ (sb(pψ(x)q, x) = pBq ∧ >)]

and that is the induction axiom for the formula

φ(x) ∨ (sb(pψ(x)q, x) = pAq ∧ >) ∨ φ(x) ∨ (sb(pψ(x)q, x) = pBq ∧ >)

which is Σn. So Φ(>,>) is provable, and hence so is A∧B → Φ(>,>). The
same goes for the other cases. So (2.2) is provable; so (2.1) is provable.

Nothing hinges on the details of this particular example.

We thus see that, for theories T in the usual arithmetical hierarchy—Q,
I∆0, IΣn, PA—the deflationary theory DT[T ] is always locally inter-
pretable in T .

The situation with compositional truth-theories is different.

Theorem 2.5. Suppose T ⊇ Q is sequential and finitely axiomatized.
Then CT−[T ] interprets Q + Con(T ).

It follows that, if T is finitely axiomatized, then CT−[T ] is logically
stronger than T . This is a consequence of a beautiful form of the second
incompleteness theorem due to Pudlák.

Theorem 2.6 (Pudlák 1985, Corollary 3.5). Suppose T is finitely axiom-
atized, sequential, and consistent. Then T does not interpret Q + Con(T ).

The original form of the second incompleteness theorem says merely that
T does not prove Con(T ). Building on earlier work by Feferman (1960,
Theorem 6.5), however, Pudlák improves on Gödel by showing that T
cannot even interpret T + Con(T ), or even Q + Con(T ). So, we have:

Corollary 2.7. Suppose T ⊇ Q is sequential and finitely axiomatized.
Then CT−[T ] is not interpretable in T . In particular, for no n ≥ 1 does
IΣn interpret CT−[IΣn].

14



Proof. If IΣn interpreted CT−[IΣn], then, since CT−[IΣn] interprets Q +
Con(IΣn), so would IΣn, contradicting Theorem 2.6—on the assumption,
of course, that IΣn is consistent.

The key result here is obviously Theorem 2.5. The proof of it turns
out to be quite messy and so is presented elsewhere (Heck, 2015, §3.2).19

But certain features of the proof will be important below, and the basic
idea behind it is easy enough to explain. As said above, there is no real
hope that CT−[T ] will prove Con(T ), since whatever the induction axioms
might be present in T have not been extended. But it turns out that we
can get very close.

One argument for Con(T ) would proceed as follows.

Call a proof good if all of its lines are true. Proofs with 0 lines
are trivially good. So suppose that n lines proofs are good,
and consider some n+ 1 line proof. If the last line is an axiom,
then it is true, since all T ’s axioms are true and all the logical
axioms are true, too. If it is not an axiom, then it must follow
by one of the rules of inference from some of the earlier lines.
But those lines are true, by the induction hypothesis, and the
rules of inference preserve truth, so the last line is again true.
Hence, by induction, n lines proofs are good, for all n; hence
all proofs are good; hence, all proofs have true conclusions.
Since there is a sentence that is not true, namely 0 = 1, it
cannot be a theorem of T , and so T is consistent.

The emphasized use of induction is unavailable in CT−[T ], but the rest of
the proof turns out to be perfectly fine. Proving that it’s fine is what gets
messy, for reasons connected with such logical principles as universal
instantiation. But, if T is finitely axiomatized, then we can indeed show
in CT−[T ] that:

(i) 0 line T -proofs are good.

(ii) If n line T -proofs are good, then n+ 1 line T -proofs are good.

The formula expressing “n line T -proofs are good” is thus what Russell
called ‘inductive’. Quite general techniques, known as ‘shortening of

19I learned Theorem 2.5 from Visser, who tells me that he regards it as “folklore”.
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cuts’,20 can then be used to show that CT−[T ] interprets Q plus the
statement “∀n(n line T -proofs are good)”. And from that it follows that
CT−[T ] interprets Q plus Con(T )—if, again, T is finitely axiomatized.

One thing about this argument that it is important to appreciate is
that it is absolutely essential that we be able to prove that all of T ’s
axioms are true. If we do not know that all of T ’s axioms are true, but
only know, of each of them, that it is true, then we cannot even prove
that all one-line proofs are good. The best way to think of this is to see
Theorem 2.5 as a consequence of:21

Theorem 2.8. Let U be any theory in the language of arithmetic. Then
CT−[T ] + T(U) interprets Q + Con(U).

Here, T(U) is the formalization of: all axioms of U are true.

Proposition 2.9. If T is finitely axiomatized, then CT−[T ] proves T(T ).22

The action, unsurprisingly, is in the proof of Theorem 2.8. Proposition
2.9 is fairly trivial. Indeed, it is easy to see that DT−[T ] already proves
that all axioms of T are true, if T is finitely axiomatized.

Proposition 2.10. For each axiom A of T , DT−[T ] provesT(pAq).

Proof. Let A be an axiom of T and so of DT−[T ]. Since T(pAq) ≡ A is
also an axiom of DT−[T ], it proves T(pAq).

Proposition 2.11. If T is finitely axiomatized, then DT−[T ] proves T(T ).

Proof. Let the axioms of T be A1, . . . An. Then by Proposition 2.10,
DT−[T ] proves T(pA1q)∧ · · · ∧T(pAnq). But then ∀x(x = pA1q∨ · · · ∨ x =
pAnq→ T(x)) follows easily.

Proposition 2.9 now follows from the fact that CT−[T ] contains DT−[T ]:
20This technique is originally due to Solovay. Burgess (2005, §2.2) gives an accessible

treatment. A more complete treatment in presented Hájek and Pudlák (1993, pp. 366ff).
The basic idea is that, if A(x) is inductive in some theory U—i.e., if U ` A(0) and
U ` A(x)→ A(Sx)—then, from U ’s point of view, the natural numbers might as well just
be the numbers that satisfy A(x). Unsurprisingly, that isn’t quite right, but the details
can be made to work.

21Note that, if T is infinitely axiomatized, we will have to choose some specification of
its axioms, both in order to formalize “all axioms of T are true” and to formalize Con(T ).
In Theorem 2.8, then, we are using the same specification both times.

22This will also be true in many cases when T is just finitely axiomatizable. It’s an
interesting exercise to prove this. But we’ll officially stick to the case of theories that are
actually finitely axiomatized.
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Lemma 2.12. For each formula A(v1, . . . , vn), CT−[T ] proves the corre-
sponding Sat-sentence:

Satσ(pA(v1, . . . , vn)q) ≡ A(val(σ, 1), . . . , val(σ, n))

A fortiori, for each sentence A in the language of T , CT−[T ] proves:
T(pAq) ≡ A.

Proof. A rigorous proof would be by induction on the complexity of sen-
tences of L. But this should be fairly obvious.23 A little experimentation
will reveal that proofs of T-sentences need no more than is available in
Qseq: We’re not proving any general laws, just a bunch of particular facts,
and Q is very good at proving particular facts.

The crucial thing to note here is the contrast between Proposition 2.9
and Proposition 2.10. If T is not finitely axiomatizable, then there is no
reason whatsoever to suspect that CT−[T ] will prove that all axioms of
T are true, although it does prove that each axiom of T is true.

To summarize, then: DT[IΣn] is locally interpretable in IΣn, and so in
that sense is no stronger than IΣn; but CT−[IΣn] is not interpretable in
IΣn.24 Thus, CT−[IΣn] is logically stronger than DT[IΣn]. Indeed, DT[IΣn]
is at best only very slightly stronger than IΣn,25 whereas CT−[IΣn] is at
least as strong as Q+Con(IΣn), which is the theory that Pudlák’s version
of the second incompleteness theorem tells us must be stronger than IΣn.
So CT−[IΣn] is signficantly stronger than DT[IΣn].

3 Objections (I)

The moral of the last section is meant to be this: Whereas deflationary
truth-theories are logically very weak, whether or not induction is ex-
tended, compositional truth-theories have significant logical strength,
even when induction is not extended. So, as I suggested earlier, there is
no symmetry between the compositional axioms and the extension of in-
duction. If we want to ‘blame’ one or the other for the non-conservativity
result discussed earier, then, we should blame the compositional axioms.

There are, however, two sorts of objections that might be made to the
interpretation of the mathematical facts that I have just suggested.

23Leigh and Nicolai (2013, §3.1) give a detailed proof.
24Since CT−[IΣn] is itself finitely axiomatized, it is not locally interpretable in IΣn.
25It will be slightly stronger if, as mentioned in footnote 18, DT[IΣn] turns out not to

be globally interpretable in IΣn.
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3.1 Theories of Satisfaction

The first objection is that matters look different if we consider satisfaction
instead of truth.

We saw earlier that DS[PA] is interpretable in PA. But corresponding
results do not hold for DS[IΣn], as the following shows.26

Theorem 3.1. DS[IΣ1]
27 contains PA.

Proof. Let A(v0, v1) be a formula of the language of arithmetic. We want
to show that we can prove the induction axiom for it. (Extension to the
case of extra free variables is straightforward.) Consider the formula:

φ(z, σ)
df
≡ ∃τ

[
τ

0∼ σ ∧ val(τ, 0) = z ∧ Satτ (pA(v0, v1)q)
]

Now, φ(z, σ) is Σ1 in IΣ1,28 so DS[IΣ1] has induction for it. The induction
axiom for φ(z, σ) is:

∃τ
[
τ

0∼ σ ∧ val(τ, 0) = 0 ∧ Satτ (pA(v0, v1)q)
]
∧

∀v0{∃τ [τ
0∼ σ ∧ val(τ, 0) = v0 ∧ Satτ (pA(v0, v1)q)]→

∃τ [τ
0∼ σ ∧ val(τ, 0) = Sv0 ∧ Satτ (pA(Sv0, v1)q)]} →

∀v0∃τ
[
τ

0∼ σ ∧ val(τ, 0) = v0 ∧ Satτ (pA(v0, v1)q)
]

(3.1)

But the Sat-sentence for A(x, y) is:29

Satτ (pA(v0, v1)q) ≡ A(val(τ, 0), val(τ, 1))

26This result is relevant to Halbach’s claim that the ‘uniform disquotation scheme’—our
DS[·]—is plausibly analytic, since DS[PA] is a conservative extension of PA (Halbach,
2001a, §2). What we have just seen is that this result depends crucially upon the choice
of PA as base theory. Whether one takes conservativity to be required for analyticity
or regards it as merely indicative of it, the uniform disquotation scheme appears to be
logically quite strong, transforming IΣ1 into a theory containing PA. It is only in very
special cases that it gives us nothing we did not already have.

27This result can surely be improved by bounding the quantifier ∃τ in the first dis-
played formula in the proof. It is not clear to me just how good the bound can be made
to be, however—that will depend upon exactly how we code sequences—so I am not
sure whether we can show that DS[I∆0] contains PA. But it seems almost certain that
DS[I∆0 + Ω1] contains PA.

28The crucial point here is that, except for Sat, everything here is primitive recursive
and so is ∆1 in IΣ1.

29This is where an attempt to use truth and substitution to prove a similar result
would break down. Let num(x) be the numeral for x. Then we can certainly consider the
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So φ(z, σ) is provably equivalent in DS[IΣ1] to:30

A(z, val(σ, 1))

Hence, (3.1) reduces to:

A(0, val(σ, 1)) ∧ ∀v0[A(v0, val(σ, 1))→ A(Sv0, val(σ, 1))]→
∀v0(A(v0, val(σ, 1))) (3.2)

And this holds for any sequence σ.
But, for any given v1, there is a sequence σ such that val(σ, 1) = v1.

Hence, for this σ, we have: A(v0, v1) ≡ A(v0, val(σ, 1)), for any v0. So (3.2)
becomes:

A(0, v1) ∧ ∀v0(A(v0, v1)→ A(Sv0, v1))→ ∀v0(A(v0, v1))

And that is the induction axiom for A(v0, v1).

One might therefore suggest that it is not the compositional nature
of CT−[T ] that gives it its strength, but its play with the notion of
satisfaction.

It goes some way towards answering this objection to note that the
extension of induction here is essential. It remains the case that, if
we do not extend induction, then, as Theorem 2.2 shows, we get only a
marginal increase in logical strength if we add the Sat-sentences,31 but
we get a significant increase in logical strength if we add a compositional
truth-theory. So the asymmetry to which I have pointed remains. But it
would be nice to have a bit more to say.

formula:
T(pA(num(z), num(v1))q)

and the induction axiom for it will be available in DT[IΣ1]. But there is no T-sentence
for T(pA(num(z), num(v1))q), with variable z and v1. There are only T-sentences for the
various instances of this formula, and we can use only finitely many of them at a time.

30By the following calculation:

∃τ
[
τ

0∼ σ ∧ val(τ, 0) = z ∧ Satτ (pA(v0, v1)q)
]

∃τ
[
τ

0∼ σ ∧ val(τ, 0) = z ∧A(val(τ, 0), val(τ, 1))
]

∃τ
[
τ

0∼ σ ∧A(z, val(τ, 1))
]

A(z, val(σ, 1))

The last step uses the fact that, since τ 0∼ σ, val(σ, 1) = val(τ, 1).
31Visser has observed that DS−[T ] is never globally interpretable in T , if T is finitely

axiomatized. Even the Sat-sentences by themselves, then, are not logically trivial.

19



3.2 Finite Axiomatizability

The second worry concerns the fact that Corollary 2.7 does not apply to
PA, as the following shows.32

Theorem 3.2 (Enayat and Visser, 2015, Theorem 5.1). CT−[PA] is in-
tepretable in PA.

The worry here is not just that Corollary 2.7 applies only to finitely axiom-
atized theories (though one might pursue that point as well). The worry
concerns what Theorem 3.2 shows about why ‘adding a truth-theory’
adds logical strength. It is true that CT−[IΣn] is stronger than IΣn, but,
since CT−[PA] is not stronger than PA, maybe we should conclude that
adding a truth-theory adds logical strength only in so far as we pretend
not to believe something we ought to believe, namely: full induction. Or,
to put it diferently: Perhaps the reason CT−[IΣn] is stronger than IΣn is
because the syntax on which we are building these theories is artificially
weak.33

3.3 Towards a Response

Somewhat surprisingly, it turns out that these two objections have a
common source: a conflation, common in contemporary work on theories
of truth, between the object theory about which we propose to reason
and the syntactic theory in which we propose to reason about that object
theory.

As we have seen, CT−[T ] is not going to be able to prove the consis-
tency of T : It lacks the necessary induction axioms. If we do want to
investigate theories in which the consistency of T can be proven seman-
tically, then, we need to consider theories in which the induction axioms
have been extended. Here, then, are some obvious questions about such
theories: How much induction do we need to prove the consistency of Q?
How much do we need to prove the consistency of IΣn? or of PA? Is it
always the same amount? Or does it vary with the object theory?

Careful analysis of the structure of semantic consistency proofs shows
that the answer is that we always need the same amount of induction:

32Note that it follows from Theorem 3.2 that CT−[PA] does not prove that all axioms
of PA are true.

33An objection along these lines was communicated to me by Burgess, whose student
Noel Swanson had made it in response to an earlier manuscript of mine that covered
much of the material we are discussing (Heck, 2009). Thanks to both of them for the
objection.
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We need it for certain Σ1 formulae involving semantic vocabulary. More
precisely:34

Theorem 3.3. Suppose T ⊇ IΣ1. Then CT[T ] + T(U) proves Con(U).

Corollary 3.4. Suppose T ⊇ IΣ1 is finitely axiomatized. Then CT[T ]
proves Con(T ).

The second of these results implies that CT[IΣ1] proves Con(IΣ1) and that
CT[IΣn] proves Con(IΣn). But we do not have any way, if we speak only
in the terms in which Corollary 3.4 is formulated, to express the insight
that the only induction we need to prove Con(IΣn) is already available in
CT[IΣ1]. The problem is that the ‘base theory’ is playing two roles. On
the one hand, through the magic of Gödel numbering, it is our theory of
syntax. On the other hand, it is the object theory, and in that role it is
what allows us to prove the basis of the induction: that all the axioms of
T are true.

The formulation in Theorem 3.3, which is ultimately more funda-
mental, goes some way towards pulling these two roles apart: The ‘base
theory’ T is now providing our theory of syntax, and the formalization of
“all axioms of U are true” is providing the basis for the induction; thus, U
is the object theory. And so, the thought might be, CT[IΣ1] + T(IΣ2) will
prove Con(IΣ2), and CT[IΣ1] + T(IΣ3) will prove Con(IΣ3), and so forth;
the constant presence of CT[IΣ1] now expresses the fact that we only
need a limited amount of induction for the argument, no matter what
the object theory may be.

In fact, however, the syntax, with its extended induction axioms,
can still ‘infect’ the object theory. We have already seen in Theorem
3.1 that DS[IΣ1] contains PA since, for each axiom of PA, there is an
extended induction axiom that implies it. So DS[IΣ1] by itself already
proves Con(IΣn), for each n, since DS[IΣ1] contains PA, and PA is reflexive.
And since CT[IΣ1] proves all the Sat-sentences, CT[IΣ1] contains DS[IΣ1]
and so also proves Con(IΣn), for each n. So, yes, CT[IΣ1] + T(IΣ2) proves
Con(IΣ2), but CT[IΣ1] already proves Con(IΣ2) by itself.

Indeed, since CT[IΣ1] contains PA, it contains CT[IΣ1] + IΣn, for each
n. But CT[IΣ1] + IΣn proves T(IΣn). So CT[IΣ1] contains CT[IΣ1] + T(IΣn),

34Something like this result has presumably been known for some time, though I
do not know of any previous statement of the result in this sort of form: as applied to
axiomatic theories of truth. I present a detailed proof elsewhere (Heck, 2015, §3.4). It
may be that this result is not best possible and that it can be strengthened to T ⊇ I∆0.
It is unclear, however, whether that is true, for reasons I discuss in the paper just cited.

Note that the remarks made in footnote 21 apply here, too.
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for each n, which implies that CT[IΣ1] + T(IΣ2), CT[IΣ1] + T(IΣ3), and
CT[IΣ1] + T(IΣn) all have the same theorems as CT[IΣ1] itself. It follows
that the object theory U is simply not playing the role it appeared to be.35

Things get worse. A modification of the proof of Theorem 3.1 shows
that, in CT[IΣ1], we can find a single extended induction axiom that
bundles all the induction axioms of PA together.36 We thus get:

Lemma 3.5. CT[IΣ1] proves that all axioms of PA are true.

So CT[IΣ1] actually contains CT[IΣ1]+T(PA). And so Theorem 3.3 implies:

Corollary 3.6. CT[IΣ1] proves Con(PA).

And now we can see quite clearly that Theorem 3.3 does not really help
us to disentangle the different roles being played by the syntactic theory
and by the object theory.

If we are going to resolve these problems and get a proper formulation
of the insight expressed when we say that only Σ1 induction is needed
for semantic consistency proofs, then what we need to do is explicitly
to disentangle the syntactic theory from the object theory: We need to
find a way to allow ourselves to vary the syntactic theory we use when
we talk about the object theory without thereby changing what object
theory we are talking about. We’ll explore how we might do so in the
next section. Once we have done so, however, the first objection will have
been answered, since, as will then be clear, results like Theorem 3.1 and
Corollary 3.6 depend essentially upon the entanglement.

Concerning the second objection, the first thing to note it that is
not the presence of full induction that is driving the proof that CT−[PA]
is intepretable in PA. It is the reflexivity of PA, as the following more
general results show. We first need the following partial converse of
Theorem 2.5.37

35Of course, this is true only so long as U is a sub-theory of PA. In that respect,
then, Theorem 3.3 can be used to ‘pull apart’ the roles played by the object theory and
the base theory, so long as T is an arithmetical theory that PA does not already prove
consistent. But that seriously limits the scope of the result, and Corollary 3.4 then has
limited application, since there are no finitely axiomatizable extensions of PA in the
same language.

36Wang (1952, p. 260) credits Rosser with the observation that we do need to ask how
CT[PA] manages to prove that all of PA’s axioms are true, and not just that each of them
is, and he gives the first detailed proof of that fact. I give a more modern presentation of
this result elsewhere (Heck, 2015, §3.4).

37It is, at present, unclear whether this result can be strengthed to give us a proper
converse of Theorem 2.5. It would be really nice if it could, since we could then conclude
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Theorem 3.7. Suppose that T is finitely axiomatized. Then CT−[T ] is
interpretable in IΣ1 + Con(T ).

This follows from results proven by Enayat and Visser (2014, esp. Theo-
rem 4.5) in their recent explorations of full satisfaction classes.

Corollary 3.8. CT−[T ] is locally interpretable in IΣ1 +
⋃
{Con(U) : U a

finite, sequential fragment of T }.

Proof. Every finite fragment of CT−[T ] is contained in CT−[U ], for some
finite fragment U ⊇ T . But CT−[U ] is interpretable in IΣ1 + Con(U),
which is of course a subset of IΣ1 +

⋃
{Con(U)}.

Theorem 3.9. If T ⊇ IΣ1 is reflexive, then CT−[T ] is interpretable in T .

Proof. Since T is reflexive, it proves Con(U), for each finite U ⊇ T . So
T contains IΣ1 +

⋃
{Con(U)}, so T locally interprets CT−[T ]. It then

follows from Orey’s Compactness Theorem that T globally interprets
CT−[T ].

Theorem 3.2 then follows from Theorem 3.9, since PA is reflexive.
There are plenty of theories that do not have full induction but are

nonetheless reflexive.38 For example, the following sort of construction
allows us to build a reflexive theory from any theory with which we wish
to begin:

T0 = U
T1 = U + Con(U)

Tn+1 = Tn + Cn

C0 = Con(U)

C1 = Con(U + Con(U))

Cn+1 = Con(Tn+1)

Now let the ‘reflexive closure’ of U , RCl(U), be ∪Tn. RCl(U) is reflexive,
since every finite sub-theory of RCl(U) is contained in one of the Tn, and
Tn+1 proves Con(Tn) by construction. So, in particular, we have from
Theorem 3.9:

Corollary 3.10. CT−[RCl(IΣ1)] is interpretable in RCl(IΣ1).

that CT−[T ] was mutually interpretable with Q+Con(T ). As we shall see below, though,
we do get this result in the disentangled setting.

38One well-known such theory is Primitive Recursive Arithmetic, but its language is
not finite, and it is not clear how the results proven here apply to such theories.
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That, however, does not look like a result that should call into question
the philosophical conclusions drawn from the discussion in Section 2.

Really to answer the second objection, however, we need to under-
stand exactly what role the reflexivity of the base theory is playing in
the proof of Theorem 3.9. As we shall see, it is not the reflexivity of the
syntactic theory that is responsible for this result, but the reflexivity of
the object theory. In particular, the reason we get Theorem 3.2 is because
we have taken PA as our object theory, not because we have taken PA as
our syntactic theory. Indeed, once we have successfully disentangled the
syntactic theory from the object theory, we will see that (the relevant
analogues of) the results reported in Section 2 are largely insensitive to
what syntactic theory we use.

4 Disentangling the Syntactic Theory From the
Object Theory

Our goal now is to disentangle the syntactic theory from the object theory.
Interestingly enough, we can do so simply by following what Tarski
actually did in “The Concept of Truth in Formalized Languages”. Here
is his explanation of what a meta-language adequate for his purposes
must be like:

A meta-language. . . must contain three groups of expressions:
(1) expressions of a general logical kind; (2) expressions hav-
ing the same meaning as all the constants of the language to
be discussed. . . ; (3) expressions of the structural-descriptive
type which denote single signs and expressions of the lan-
guage considered, whole classes and sequences of such expres-
sions or, finally, the relations existing between them. (Tarski,
1958, pp. 210–11)

The expressions mentioned under (3) belong to syntax; those under (2),
to the object language. Tarski does not quite say that these two classes
are to be disjoint, but it is natural to read him that way, and that is
plainly how he conceives the matter in his discussion of the calculus of
classes (Tarski, 1958, §3).

Tarski was of course aware that syntax can be interpreted in arith-
metic (at least after reading Gödel): His famous theorem on the inde-
finability of truth depends upon that fact. But the central purpose of
“The Concept of Truth” is not ‘limitative’ but positive: Tarski’s primary
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goal in that paper is to show that there is a consistent notion of truth
that is adequate the meta-mathematical purposes for which truth was
then already being deployed. Doing that simply does not require Gödel
numbering or any similar technique. The idea of separating syntax from
the object theory is thus old, even if the application I propose to make of
it is somewhat new.

Let L be the object language: the language for which we want to give
a truth-theory. Let S be a disjoint language in which to formalize syntax.
The most natural choice for S would be the language of concatenation
(Quine, 1946; Corcoran et al., 1974; Grzegorczyk, 2005). But so as not to
make things too unfamiliar, we may take S to be a copy of the language
of arithmetic, written in a different font, perhaps. Our theory of syntax
can then be taken be Q, or IΣ1, or whatever we wish.

To formulate a semantics for L, we of course need to be able to talk
about the things L talks about. In particular, if we’re going to have the
usual Tarski-style clauses for the primitive expressions of L, we need
to have the expressive resources of L available. So the obvious choice
for the language of our semantic theory would be S ∪ L plus whatever
semantic machinery we want, and that is what we shall use. Because
of complications we need not consider, however, we shall regard the
semantic theory as many-sorted. Variables ranging over the domain of S
will be italic; those ranging over the domain of L will be upright.

We also need a theory of sequences or, better, of assignments of objects
to variables: There is no hope of coding sequences of objects from the
domain of L as objects in S, at least not in general.39 The details of that
theory do not matter here, either. What is important is that assignments
live in a third sort. Variables ranging over them will be Greek letters.40

A truth-theory for L will then be more or less the familiar one, with
some adjustments to take account of the present framework. For example,
these axioms will be common to all theories, independent of L:

(v) var(vi)→ Denα(v, val(α, i))

(∧) Satα(pA ∧Bq) ≡ Satα(A) ∧ Satα(B)

(∀) Satα(p∀viA(vi)q) ≡ ∀β[β
i∼ α→ Satβ(pA(vi)q)]

39Simply because L might be the language of set theory, and there are way too many
sets to code even finite sequences of them as numbers.

40The missing details are provided elsewhere (Heck, 2015, §4.1).
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The other axioms of the theory will depend upon what L is, and it could
be anything. If L is the language of set theory, then the only other axiom
will be:

(∈) Satα(pt ∈ uq) ≡ ∃x∃y[Denα(t, x) ∧ Denα(u, y) ∧ x ∈ y]

In the case of the language of arithmetic, we’ll have axioms like:

(0) Denα(‘0’, x) ≡ x = 0

(+) Denα(pt+ uq, x) ≡ ∃y∃z[Denσ(t, y) ∧ Denσ(u, z) ∧ x = y + z]

Note that the used expressions ‘∈’, ‘0’, and ‘+’ are expressions of L, not of
S.

As for notation:41

Definition. Let T be an arithmetical theory. Then:

• TT−L [T ] is the semantics for L we have just described.

• TTL[T ] is TT−L [T ] with the induction axioms in T extended to per-
mit semantic vocabulary and reference to assignments.42

So the induction axioms of TT−L [T ] are ‘purely syntactic’. (‘TT’ stands for:
Tarskian truth.)

Our earlier results transfer smoothly to this framework, though often
in improved forms, and there are new results available as well. I shall
state most of these without proof. Many of the proofs are similar to ones
already given; the rest are more complex than it makes sense to present
here. Full proofs are presented elsewhere (Heck, 2015, §4).

First, we get an analogue of Lemma 2.12.

Lemma 4.1. For each formula A(v0, . . . , vn) of L. TT−L [Q] proves the
corresponding Sat-sentence:

Satσ(pA(v0, . . . , vn)q) ≡ A(val(σ, 0), . . . , val(σ, n))

41There are again questions about what exactly it means to extend the induction
scheme, in general. But we’ll limit our attention to cases where it is clear what it means.

42Because our theory is many sorted, quantifiers of any of the three types could now
appear in the induction axioms. That leads to the question what exactly we mean by
a Σn formula in the present setting. It turns out that we can ignore the differences
between types of quantifiers for our purposes. Thus, e.g., ∃x(Denσ(t, x)) counts as Σ1 for
our purposes, and ∀σ∃t∃x(Denσ(t, x)) counts as Π2.
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But now the situation is improved: TT−L [Q] is as weak as it is possible
for it to be.43

Proposition 4.2. TT−L [Q] is interpretable in Q.

Proof. Since no theory stated in L is so far in evidence, we can give L the
completely trivial interpretation in a one-element domain. A semantic
theory for L, so interpreted, is then easily constructed.44

If we develop our truth-theory in the usual way, where syntax and the
object theory are intertwined, then the weakest materially adequate
truth-theory for the language of arithmetic is CT−[Qseq], and it follows
from Theorem 2.6 that CT−[Qseq] is not interpretable in Q.

As said, no object theory is yet in play here. To add one, we simply
add it. Thus, for example, if T is a theory in L, then TT−L [Q] + T is a
semantic theory for the language of L, with Q as the syntactic theory,
plus the object theory T . Then we get the following analogues of our
earlier results.

Proposition 4.3. TT−L [Q] + T proves of each axiom of T that it is true.
(Cf. Proposition 2.10.)

Corollary 4.4. If T is finitely axiomatized, then TT−L [Q] + T proves the
obvious, disjunctive formalization of “all axioms of T are true”. (Cf.
Proposition 2.9.)

Theorem 4.5. TT−L [Q] plus “all axioms of T are true” interprets Q +
Con(T ). (Cf. Theorem 2.8.)

Corollary 4.6. Let T be a finitely axiomatized theory in L. Then TT−L [Q]+
T interprets Q + Con(T ) and so is not interpretable in T . (Cf. Theorem
2.5 and Corollary 2.7.)

Now, however, we can also prove a converse of Corollary 4.6:

Theorem 4.7. Let T be a finitely axiomatized theory in L. Then TT−L [Q]+
T is interpretable in Q + Con(T ).

Thus, we get a precise characterization of just how strong TT−L [Q] + T is:
43This means, among other things, that there is a materially adequate, fully composi-

tional theory of truth for the language of ZFC that is interpretable in Q.
44If L contains no terms other than variables, then we may not be able to specify a one

element domain via a formula δ(x) with just x free. In that case, we will have to use a
parameter, which means that TT−L [Q] will only be parametrically interpretable in Q.
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Corollary 4.8. Let T be a finitely axiomatized theory in L. Then TT−L [Q]+
T is mutually interpretable with Q + Con(T ).

As said, then, compositional truth-theories have significant logical power,
even when the syntax is as weak as possible, and even when we do not
extend induction: If we start with a finitely axiomatized theory T and
add an absolutely minimal but still compositional theory of truth for the
language of T—and add it in a way that is guaranteed not to ‘infect’ T
itself—then the result is a theory that is logically stronger than T in the
sense that it is not interpretable in T .

Perhaps the nicest way to formulate this point is due to Visser: A
compositional theory of truth is like an operator that ‘upGödels’ any
finitely axiomatized theory you hand it. What is upGödeling? It’s the
operation that maps a finitely axiomatized theory T to the one that
Pudlák’s form of the second incompleteness theorem guarantees will
always be stronger than it is: Q + Con(T ). And so, if you think of
TT−L [Q] + (·) as an operator on theories, then what it does, when handed
a finitely axiomatized theory T , is precisely to upGödel it: It hands you
back a theory that is mutually interpretable with Q + Con(T ). So it is
not just that TT−L [Q] + T is always stronger than T (when T is finitely
axiomatized). It is stronger in the very specific, and very important, way
that is revealed by the second incompleteness theorem.

Our specific interest here, however, is in the objection raised in 3.2:
that Corollary 2.7 applies only to finitely axiomatized theories and does
not apply to PA. I said in 3.3 that, once we had disentangled the syntax
from the object theory, it would be possible to see that this is due not
to PA’s role as syntax, but to its role as object theory. We’ve done the
disentangling now. Let’s see what difference it has made.

First, note that we do get the same phenomenon as before when PA
is the object theory.

Proposition 4.9. TT−L [Q] + PA is interpretable in PA. (Cf. Theorem 3.2.)

Proof. Let U be a finite fragment of TT−L [Q] + PA. Then U is a sub-theory
of TT−L [Q] + IΣn, for some n, and so is interpretable in Q + Con(IΣn), by
Theorem 4.7. But Q+Con(IΣn) is a sub-theory of PA, since PA is reflexive,
so U is interpretable in PA.

That establishes local interpretability, and Orey’s Compactness Theo-
rem does the rest.

That is essentially the same as the proof of Theorem 3.9, and the proof
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can easily be extended to the case of reflexive theories generally. So, e.g.,
we also have:

Proposition 4.10. TT−L [Q] + RCl(IΣ1) is interpretable in RCl(IΣ1). (Cf.
Corollary 3.10.)

By contrast, Theorem 4.7 extends smoothly to the case of PA as
syntactic theory and, indeed, to any theory that contains Q.45

Corollary 4.11. Let T be a finitely axiomatized theory in L, and suppose
that S ⊇ Q. Then TT−L [S]+T is not interpretable in T . Hence, TT−L [PA]+T
is not interpretable in T .

Proof. We know from Theorem 4.7 that TT−L [Q] + T is not interpretable
in T . But if S ⊇ Q, then TT−L [S] + T contains TT−L [Q] + T and so isn’t
interpretable in T , either.

Why does it make such a difference whether PA is our syntax or our
object theory? The reason, ultimately, is pretty simple. The basic result
is Theorem 4.5: TT−L [Q]+ “all axioms of T are true” interprets Q+Con(T ).
But if we do not know that all axioms of T are true—in particular, if
we only know that each of them is—then we cannot even prove that all
one-line proofs have true conclusions, as noted earlier. So we will be able
to prove that TT−L [Q] + T interprets Q + Con(T ) if, but only if, we can
prove in TT−L [Q] + T that all axioms of T are true. This is trivial if T
is finitely axiomatized. But if it is not even finitely axiomatizable, then
there is no evident way for TT−L [Q] + T (or even TT−L [PA] + T ) to prove
that all axioms of T are true, rather than just that each of them is.

One can see this from the fact that Proposition 4.9 continues to hold
not just as the syntactic theory is strengthened. . .

Proposition 4.12.
45If T is some finitely axiomatizable sub-theory of PA, then this is of course a boring

result. There is no reason whatsoever to expect, say, TT−L [PA] + IΣ2 to be interpretable
in IΣ2, and in fact PA is not interpretable in any of its finitely axomatizable sub-theories
(Feferman, 1960, Theorem 6.8). But of course T need not be a sub-theory of PA. It could,
for example, be Q+Con(PA), and then Corollary 4.11 tells us that TT−L [PA]+(Q+Con(PA))
is not interpretable in Q + Con(PA).

It is one of the advantages of the present way of proceeding, however, that T need not
even be formulated in the language of arithmetic. We know that ZF ` Con(PA). So let C
be the finite set of axioms of ZF that are used in that proof. Since C ` Con(PA), it follows
from results of Feferman’s that C is not interpretable in PA. Yet it still follows from
Corollary 4.11 that TT−L [Q] + C, and so TT−L [PA] + C, is not interpretable in C. Clearly, it
is the theory of truth that is responsible for the extra strength.
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(i) TT−L [IΣn] + PA is interpretable in PA.

(ii) TT−L [PA] + PA is interpretable in PA.

. . . but even when we add semantic induction:

Proposition 4.13 (Heck, 2015, Corollary 4.18). TTL[PA] + PA is inter-
pretable in PA.

And this is despite the fact that we have:

Theorem 4.14 (Heck, 2015, Theorem 4.11). TTL[IΣ1] + T(T ) proves
Con(T ). In particular, if T is finitely axiomatized, then TTL[IΣ1] + T `
Con(T ).

So the reason TTL[PA] + PA not only does not prove Con(PA) but cannot
even interpret Q + Con(PA) is simply that it has no way to prove that all
of PA’s axioms are true, rather than just that each of them is. And the
same goes for any other reflexive theory you wish to consider.

There’s an odd irony to this situation. Deflationists frequently claim
that the truth-predicate is a ‘device of infinite conjunction’: Its function,
allegedly, is to allow us to formulate such generalizations as “All axioms
of PA are true”. But very little effort has been made to tell us precisely
what that is supposed to mean: What exactly is the relationship between
this generalization and the infinite conjunction of PA’s axioms? The
only serious attempt known to me to answer this question is due to
Halbach (1999), who shows that, in certain circumstances, adding such
a generalization to a theory is exactly equivalent to adding all of its
instances. What we have seen, however, is that, considered as additions
to, say, TTL[IΣ1], there is all the difference in the world between the
axioms of PA and the generalization stating that all of them are true.
The latter is a lot stronger than the former.46

That’s not to say, of course, that there’s not some other way of ex-
plaining what it means to ‘use the truth predicate merely as a device of
generalization’. But I don’t know what that would be.

That, then, addresses the objection raised in 3.2. The other objection,
recall, was based upon the observation that DS[IΣ1] contains PA. But
that sort of result does not transfer to the present framework, as we
shall now see.

46I have made a similar complaint elsewhere (Heck, 2004, §3).
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Definition. Let U be an arithmetical theory, taken as our theory of
syntax. Then:47

• DDTL[U ] is the theory of truth for the language of T that is similar
to TTL[U ] but, instead of containing a compositional theory of truth
contains just the T-sentences for L—though it also extends the
induction scheme to permit the presence of the truth-predicate.

• DDSL[U ] is the theory of truth for the language of T that is similar
to DDTL[U ] but adds the Sat-sentences for L (and extends the
induction scheme).

The sorts of results concerning disquotational theories of truth proven
earlier transfer to the disentangled setting.

Proposition 4.15.

(i) DDTL[IΣn] is interpretable in IΣn.

(ii) DDTL[IΣn] + T is locally interpretable in IΣn + T .

(iii) DDTA[IΣn] + IΣm is locally interpretable in IΣmax(m,n).

Proof. The proof of (i) is similar to that of Proposition 4.2. The proof of
(ii) simply mimics that of Theorem 2.4.

For (iii), DDTA[IΣn] + IΣm is locally interpretable in IΣn + IΣm, where
these two theories are formulated in disjoint copies of the language of
arithmetic. But IΣn + IΣm will obviously be interpretable in IΣmax(m,n).

So we also get an analogue of Theorem 2.3.

Corollary 4.16. DDTA[PA] + PA is interpretable in PA.

Proof. Any finite fragment of this theory is contained in one or another
of the DDTA[IΣn] + IΣm. So each finite fragment is interpretable in IΣn,
for some n, and so is also interpretable in PA. That establishes local
interpretability, and now we invoke Orey’s Compactness Theorem.

47‘DDT’ stands for: disentangled disquotational truth; ‘DDS’, for: disentangled disquo-
tational satisfaction.
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Unfortunately, the sorts of techniques used in these proofs do not
seem to allow us to prove that DDSL[IΣn] + T is locally interpretable in
IΣn + T ,48 and I do not know exactly how strong DDSL[IΣn] + T is. But
for no n and m does DDSA[IΣn] + IΣm contain PA. On the contrary, it
follows from Theorem 5.2, to be mentioned below, that, if T is finitely
axiomatized, then DDSA[IΣn]+ IΣm is interpretable in IΣn+Con(IΣm). So,
in particular, DDSA[IΣ1] + IΣ1 is no stronger than IΣ1 + Con(IΣ1), which
is a proper sub-theory of IΣ2 that does not even interpret IΣ2.49 So there
is no danger that DDSL[IΣ1] + T is going to be vastly stronger than T , as
DS[IΣ1] is vastly stronger than IΣ1.

Moreover, the kind of argument that was used to show that DS[IΣ1]
contains PA—or, more generally, to extract information about the object
theory from the theory of truth—is simply unavailable in the disentan-
gled setting. The reason is that the induction that is available in the
syntactic theory is over syntactic objects: expressions. We can formalize
proofs by induction on the complexity of expressions, and object-language
expressions may occur in the induction axioms used in those proofs. But
the converse is not true: The induction scheme (or other axiom scheme,
such as separation) present in the object theory has not been extended,
so it is difficult to see how the theory of truth could ‘infect’ the object
theory.

In particular, if we look at the instance of induction on which the
proof of Theorem 3.1 was based:

∃τ
[
τ

0∼ σ ∧ val(τ, 0) = 0 ∧ Satτ (pA(v0, v1)q)
]
∧

∀v0{∃τ [τ
0∼ σ ∧ val(τ, 0) = v0 ∧ Satτ (pA(v0, v1)q)]→

∃τ [τ
0∼ σ ∧ val(τ, 0) = Sv0 ∧ Satτ (pA(Sv0, v1)q)]} →

∀v0∃τ
[
τ

0∼ σ ∧ val(τ, 0) = v0 ∧ Satτ (pA(v0, v1)q)
]

we see that, in the disentangled setting, it is not even well-formed.
In the second line, for example, the variable v0 that is bound by the
universal quantifier must come from the syntactic language: It ranges
over expressions. But val(τ, 0), the value that τ assigns to the first

48It is true that DDSL[IΣn] is interpretable in IΣn: We can give L a trivial interpreta-
tion again. But we can do that for TTL[IΣn], as well.

49This is because IΣ2 is the same theory as IΣ1 plus reflection for Σ3 formulas (Beklem-
ishev, 2005, p. 231, Theorem 7). So IΣ2 proves Con(IΣ1 + Con(IΣ1)). Thanks to Volodya
Shavrukov for confirming my suspicion and for the reference.
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variable, is in the domain of the object language. So val(τ, 0) = v0 makes
so sense, and the same is true of the second conjunct on every other line.

Admittedly, then, several issues remain concerning exactly what
adding the Sat-sentences to a given theory, even in a disentangled way,
gives us, in terms of logical strength, at least in the case when we extend
induction. If we do not extend induction, then the same sorts of results
as we had earlier are available in the disentangled setting, too. (I.e., we
have analogues of Theorem 2.1 and Theorem 2.2.) And it seems likely
that DDSA[IΣ1] + IΣ1 will prove to be weaker than TTA[IΣ1] + IΣ1, since
it is difficult to see how DDSA[IΣ1] + IΣ1 could possibly prove Con(IΣ1).
At the very least, the sort of proof that is available in TTA[IΣ1] + IΣ1 will
not available in DDSA[IΣ1] + IΣ1, since DDSA[IΣ1] + IΣ1 is not even going
to be able to prove, say, that modus ponens is valid: To do that, you need
to be able to reason about conditionals generally, and DDSA[IΣ1] + IΣ1

has no resources for doing so. We will be able to prove of each instance of
modus ponens that is it valid, but not that all of them are.

5 Objections (II)

All of that said, there is another worry one might have about the frame-
work we are now using.

As we have seen, if T is finitely axiomatized, then TTL[IΣ1]+T proves
Con(T ). It is important to understand, however, that the particular sen-
tence Con(T ) that is being proved is a sentence of the syntactic language
S: If our syntax were stated as a theory of concatenation, then the con-
sistency statement would be formulated using concatenation and other
syntactic notions defined in terms of it. Of course, in the sorts of cases in
which we are primarily interested, there will also be a sentence of the
object language L that expresses the claim T is consistent. (There will
be many such sentences, in fact.) So we need to distinguish the sentence
ConS(T ) of the syntactic language that I have said can be proven in
TTL[IΣ1] + T from the sentence ConL(T ) of the object language about
which I have so far said nothing.

And, indeed, the object language sentence ConL(T ) cannot be proven
in TTL[IΣ1] + T . This follows from a much more general observation,
due to Halbach, that even TTL[PA] + T is a conservative extension of T
(Leigh and Nicolai, 2013, §3.2). The thought, then, is that this shows
that there is something unnatural about the framework that results from
our disentangling the syntactic theory from the object theory. Recall, for
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example, the following quote from Field (1999, p. 536):

. . . [T]he way in which we “learn more about the natural num-
bers by invoking truth” is that in having that notion we can
rigorously formulate a more powerful arithmetical theory
than we could rigorously formulate before. There is nothing
very special about truth here: using any other notion not
expressible in the original language we can get new instances
of induction, and in many cases these lead to nonconservative
extensions.

Disentangling the syntax from the object theory might have seemed
like a good idea, but if we do so then we never get non-conservative
extensions! Disentangling thus seems to cost us the ability to use truth
to learn more about the natural numbers in the way we thought we could.
So maybe we should reconsider.

I understand why one might have such a reaction. To be honest, when
Halbach first mentioned his observation to me, I was both surprised and
puzzled. On further reflection, however, it has come to seem to me that
the situation here is exactly as it should be. There is nothing to stop
us from using truth to learn more about arithmetic. The interesting
questions are (i) what we need to add to TTL[IΣ1] + T if we are to do so
and (ii) why we should need to add it.

Halbach’s original proof of his observation was a straightforward gen-
eralization of an earlier model-theoretic proof, due to Craig and Vaught
(1958, p. 298, Lemma 2.7), that TT−L [Q] +T is a conservative extension of
T . But, if we limit attention to finitely axiomatized theories, then there
is an easier proof that is, in the present context, more illuminating.50

Proposition 5.1. If T is a finitely axiomatized, consistent theory in L,
then TTL[PA] + T is a conservative extension of T .

Proof. Let A be any non-theorem of T . So T + ¬A is consistent, and
it is finitely axiomatized. So, if TTL[PA] + T proved A, then so would
TTL[PA]+[T +¬A], which would then be inconsistent. But TTL[PA]+[T +
¬A] isn’t inconsistent since, by Theorem 5.2, to be mentioned shortly, it
is locally interpretable in PA + Con(T + ¬A), which is not just consistent
but true.

50The same proof works for subtheories of PA such as IΣ1, taken as the syntactic
theory.
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The case of ConL(T ) is just a special case of this more general result.
By the second incompleteness theorem, T + ¬ConL(T ) is consistent if
T is, and it is finitely axiomatized if T is, as well. So it follows from
Theorem 4.14 that TTL[PA]+[T +¬ConL(T )] proves ConS(T +¬ConL(T )).
But now it is clear that it had better be ConS(T + ¬ConL(T )) that we
are proving, and not ConL(T + ¬ConL(T )). If TTL[PA] + [T + ¬ConL(T )]
proved ConL(T + ¬ConL(T )), then, since ConL(T ) trivally follows from
ConL(T + ¬ConL(T )), TTL[PA] + [T + ¬ConL(T )] would prove ConL(T )
and so would be inconsistent. Which, again, it is not.

From a model-theoretic point of view, then, what is happening is that
the only information we have about the structure of the L-related part of
models of TTL[PA] + T is what is provided by the object theory T . The
truth-theory for L—the TTL[PA] part—does not constrain the structure
of the part of the model for the object language at all. In particular, there
is nothing in the theory of truth that requires the domain of L to be in
any way ‘standard’ or, to be more precise, to be standard relative to the
syntax.

A model of TTL[PA] + T consists, more or less, of a model of PA,
considered as our syntax, and a model of T , considered as our object
theory, plus some semantic pieces that connect these two parts. It is
easy to see that, if L is the language of arithmetic, then the domain
of the syntactic language has to be isomorphic to an initial segment
of the domain of the object language. This is because we can prove in
TTL[PA] + T that every numeral denotes a number—a member of the
domain of the object language—and because the numbers so denoted
will be isomorphic to the numerals that denote them.51 But the converse
need not be true: We have no way to prove that every number is denoted
by a numeral. So it is perfectly possible for the domain of the object
language not to be an initial segment of that of the syntactic language.
In particular, the model of the syntactic part of the theory could be
standard, and the model of the arithmetical part could be non-standard.
As a result, it is perfectly possible for ConS(T ) to be true in the model,
even though ConL(T ) is false in the model.

And that, it seems to me, is absolutely as it should be. A theory of
truth for the language of arithmetic shouldn’t tell us anything specific
about the domain over which the object-language variables range. It
should simply take the domain as given, much as it takes the interpre-
tation of the primitives of the object language as given: ‘0’ denotes 0,

51Note that this will be true even if there are non-standard numerals.
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whatever that is; ‘<’ is true of <x, y> just in case x < y, whatever that
means; and the variables range over, well, whatever it is they range
over. When we do model theory, we do not take the interpretations of
the primitives as given: We may take ‘0’ to refer to ∅; we may take ‘<’
to be true of <x, y> just in case some complicated condition obtains; and
we may take the domain to be whatever we like, sets for the language
of arithmetic or numbers for the language of set theory. But we are not
doing model theory. We are doing semantics.52

Similarly, a theory of truth for the language of arithmetic shouldn’t,
all by itself, allow us to prove that every number is denoted by a numeral,
let alone allow us to prove new purely arithmetical theorems. The
following is no doubt a plausible argument: 0 is denoted by a numeral; if
n is denoted by a numeral, then n+ 1 is denoted by a numeral; so every
number is denoted by a numeral. But to make this argument, we need to
use ‘extended’ induction over the natural numbers, which is something
to which we were not previously committed and to which we cannot
be committed simply because we have decided to theorize semantically
about the language of arithmetic. To put the point more generally: The
mere fact that we have a theory of truth for some language L cannot, all
by itself, force us to accept new principles concerning whatever it is that L
talks about, that is, to add new axioms to whatever theory stated in L we
might antecedently have accepted. In that sense, then, Field is absolutely
right: The way we can use truth to learn more about the natural numbers
is indeed to use it to “formulate a more powerful arithmetical theory”
(Field, 1999, p. 536, my emphasis). And that is something we can do
if we wish: If we want, we can extend whatever induction axioms we
accept to permit semantic vocabulary. My point, again, is simply that
we cannot be committed to doing so simply because we have a theory
of truth for the language of arithmetic, even a fully compositional one.
That theory is a semantic theory, one about expressions and truth. It
is not, in its own right, an arithmetical theory, one about numbers, and
simply having it cannot force us to accept new instances of induction.

52I will not pursue the issue here, but if one wanted to formalize model-theoretic
reasoning in the sort of framework in which we are working, then what one would
need to do is add a third sort of language, that in which the model is to be described,
and a ‘theory of models’ that allows to reason about their structure. The truth-theory
would then no longer be homophonic, but would interpret the object language using
the language of the theory of models. What was the object theory then becomes part of
our theory about the structure of the model. Its role is simply to ensure that certain
statements of the object language come out true in that model.
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Does that mean that Field wins? No, because, once the syntax has
been disentangled from the object theory, it becomes clear that the issue
should never have concerned conservativity over the object theory.53

Surely one would not expect our theory about the language we use to
talk about physical reality, say, to entail new substantive facts about
physical reality when added to whatever physical theory we happen to
accept. And the same is true for arithmetic and the language we use to
talk about it. Everyone, deflationist or otherwise, should therefore agree
that a semantics for the language we use to talk about some subject
matter should be conservative over our theory of that subject matter.54

The right question to ask is therefore not whether a semantic theory for
a given language L is conservative over theories stated in L, but whether
it is conservative over a purely syntactic theory for L. The right question
is not what we can learn about numbers using the notion of truth but
what we can learn about expressions using the notion of truth.

With that change, however, the entire dialectic that has surrounded
the issue of conservativity transfers smoothly. We can learn a lot about
expressions if we have access to semantic notions. If we have a fully
compositional theory of truth for a language L, for example, then we can
use induction on the complexity of expressions to prove the consistency
of any finitely axiomatized theory in L that we are prepared to accept
and, more generally, to prove the consistency of any theory all of whose
axioms we regard as true. The statement that a theory is (deductively)
consistent is a purely syntactic statement. Semantics is therefore not
conservative over syntax.

Of course, someone might respond:

. . . [T]he way in which we “learn more about [expressions] by
invoking truth” is that in having that notion we can rigorously
formulate a more powerful [syntactic] theory than we could
rigorously formulate before. There is nothing very special
about truth here. . . . (adapted from Field, 1999, p. 536)

But, as before, it is not enough simply to have truth and some extra
induction: DDTA[PA] does not allow us to prove Con(T ), even if we add
“all axioms of T are true”. The compositional principles are also needed
for such a proof. So we may want to know which of these is doing more
of the work: Is it the extension of induction that is responsible for the

53A similar point is made by Leigh and Nicolai (2013, §4.1).
54Yes, there is a special case. We’ll get to it.
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Base: U + T No New Induction Extend Induction

Add the
T-sentences Locally

Interpretable

DDTL[U ] + T
Locally

Interpretable

Add the
Sat-sentences Locally

Interpretable

DDSL[U ] + T
Unclear

Add a fully
compositional
truth-theory

TT−L [U ] + T
Not interpretable

TTL[U ] + T
Not interpretable,
and stronger still

Table 1: The Mathematical Facts (U = IΣn,PA)

increase in strength? or is it the compositional principles? The answer
to that question emerges from the mathematical facts summarized in
Table 1. Adding a compositional theory of truth for a language L to some
finitely axiomatized theory stated in L adds significant logical strength,
whether or not we extend the induction axioms, whereas adding a non-
compositional theory adds little if any logical strength, even if we do
extend the induction axioms.

Now, to be sure, there is a special case: The case in which the object
theory is itself a theory of syntax and the object language is the language
of that very theory of syntax. In that case, one might think, we have no
choice but to entangle syntax with the object theory, so that we collapse
back into the more familiar framework used in Section 2, in which case
the objections discussed in Sections 3.1 and 3.2 are restored. But, first of
all, while this sort of case—in which self-reference is not only possible
but natural—is important, it seems to me obvious that it is a special
case. And even in this special case, it is still important to distinguish the
role played by our theory of syntax qua theory of syntax from the role
it plays qua object theory, for all the reasons given in 3.3. That is what
disentangling allows us to do.

For some, the disentangled framework may still feel unnatural some-
how. If so, then consider the fact that, if we do disentangle the syntactic
theory from the object theory, we not only get improved results like the
ones discussed in Section 4 but results like the following:

Theorem 5.2 (Heck, 2015, §4.5). Suppose T is finitely axiomatized.
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Then:

(i) For all n ≥ 1, TTL[IΣn] + T is mutually interpretable with IΣn +
Con(T ).

(ii) TTL[PA] + T is mutually locally interpretable with PA + Con(T ).

I for one trust mathematical elegance much more than I trust intuitive
judgements about what seems natural, especially when those judgements
have been shaped by decades of doing things one particular way. And
the elegance of the results just mentioned, in my opinion, makes a very
strong case for any framework that permits them to be formulated and
proved.

Even in the special case in which our syntactic theory and our ob-
ject theory are formulated in the same language, then, my response to
the objections discussed in Sections 3.1 and 3.2 is the same: What is
responsible for the phenomena on which they rest is the interaction of
our syntactic theory with our object theory. We can allow these theories
to interact if we like, but the familiarity of the usual setting that does
not even distinguish them should not blind us to what we are doing.
Even in this case, we can still distinguish between the two roles a single
theory might play and investigate them formally, using the framework
developed in Section 4. And we ought to distinguish those roles, too,
since it is only if we do so that certain insights can be properly stated.
Such facts do not lapse simply because we choose, for different reasons,
to work in a setting in which the questions to which they are answers
cannot even be formulated.

6 Closing

I began this paper by recalling the history of the debate over the conser-
vativeness argument against deflationary theories of truth, and we have
just had reason to recall that history again. Nonetheless, my purpose
here has not been to revive that debate. My purpose, rather, has been to
argue that compositional theories of truth are non-trivial, in the sense
that they have significant logical strength. Although such theories can
only be used to prove consistency when we extend the induction axioms,
they allow us to interpret consistency statements even when we do not,
and that is known to be logically significant.
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For what it is worth, I do not myself take this result to show that
Shapiro and Ketland were right and that Field was wrong. Shapiro and
Ketland are to be applauded for trying to find some concrete content in
the gnomic pronouncements some deflationists have made about truth’s
‘insubstantiality’, but I tend to agree with Halbach (2001b, p. 188) that
“. . . it is hard to see why the deflationist should be committed to conser-
vativeness at all”. Since it also seems hard to see why a deflationist
should be committed to the logical vacuity of whatever truth-theoretic
principles she might accept,55 I do not take the results proven here to
‘refute’ deflationism. But they certainly do show that the compositional
principles are not the trivialities they are often taken to be.56

It thus becomes an important question what right deflationists have
to such compositional principles and how they should understand the
role the notion of truth plays in them. Those questions, however, are
ones I will have to discuss elsewhere (Heck, 2014).57

55Field (1999, p. 534) emphasizes that no deflationist has ever held that truth is
‘expressively’ insubstantial.

56In my view (Heck, 2004, §4), the T-sentences themselves are not trivialities, either,
but for quite different reasons.

57This paper is one of many to emerge from an earlier manuscript, “The Strength of
Truth Theories” (Heck, 2009), that ultimately became unmanageable. Thanks to Volker
Halbach and Jeff Ketland for conversations early in the history of my work on this topic,
and to Josh Schechter for conversations later on, that helped greatly. Comments on the
earlier manscript from Cezary Cieśliński and Ali Enayat were also very helpful. Thanks
also to two anonymous referees for their remarks.

Talks incorporating some of these ideas were given at a conference on philosophical
logic, organized by Delia Graff Fara and held at Princeton University in April 2009; at
the New England Logic and Language Colloquium and at the Philosophy of Mathematics
Seminar at Oxford University, both in May 2011; and at a meeting of the Logic Group
at the University of Connecticut, in April 2012. Thanks to everyone present for their
questions and comments, especially J. C. Beall, John P. Burgess, Hartry Field, Daniel
Isaacson, Graham Leigh, Carlo Nicolai, Charles Parsons, Agustín Rayo, and Lionel
Shapiro, as well as Volker and Josh, again. Special thanks to my commentator at
Princeton, Josh Dever, whose comments were insightful and lucid, as well as helpful.

I owe the greatest debt, however, to Albert Visser. Just as my ideas were starting
to come together, discussions with Albert transformed the direction of this project. It
was from him that I learned of Theorem 2.8 and its attendant corollaries, which led, of
course, to the idea that we should focus on interpretability, not on conservativity, which
is pretty much the central idea of this paper. Albert has also read many drafts along the
way and provided extensive feedback. Obviously, he bears no responsibility for what I’ve
done with the idea, and I’m not sure he’d agree with how I’ve developed it. Nonetheless,
this paper would never have been written without Albert’s assistance, for which I am
extremely grateful.
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