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Abstract

Cezary Cieśliński has proved a result shows that highlights ‘logical reflection’:
The principle that every logically provable sentence is true. He suggests further
that this result has a good deal of philosophical significance, specifically for the
so-called ‘conservativeness argument’ against deflationism. This note discusses
the question to what extent Cieśliński’s result generalizes, and just how strong
‘logical reflection’ is, and suggests that the answers to these questions call the
philosophical (though not the technical) significance of Cieśliński’s result into
doubt.

All the arithmetical axioms of PA are true. So are all the logical
axioms. And the rules of inference preserve truth. So all theorems of PA
are true.

Such an argument is known as a ‘soundness proof ’ for PA. Its conclu-
sion is the so-called global reflection priniciple for PA:1

GRfnPA ∀x[BewPA(x) → Tr(x)]

Soundness proofs are of interest for a number of reasons, including the
fact that the notion of truth seems to occur essentially in them. The proof
is itself an induction on the length of PA-proofs, the ‘inductive predicate’
being: Tr(x). So the most natural way to formalize the argument would
be in the theory known as CT[PA], which is PA plus a Tarski-style compo-
sitional theory of truth, where the (newly added) semantic vocabulary is
allowed to occur in the induction axioms.2

Cezary Cieśliński, however, has suggested that the extended induc-
tion axioms are doing only a very particular sort of work. Let GRfn∅

1 Here BewT (x) is some ‘standard’ provability predicate for T .
2 In fact, the proof can be formalized straightfowardly in CT[IΣ1] (Heck, 2015, Theorem

3.20).
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be the global reflection principle for logic itself, which says that every
logically provable sentence is true:

GRfn∅ ∀x[Bew∅(x) → Tr(x)]

And let CT−[PA] be PA plus a Tarski-style compositional theory of truth,
but without any extension of the induction axioms. Cieśliński (2010b)
proves:

Theorem 1. CT−[PA] + GRfn∅ proves GRfnPA.

So, the thought is, the strong truth-theory CT[PA] is only needed to
prove reflection for logic.

The result is, of course, not open to doubt. Here, though, I want to
make some observations about it.

1. The result is essentially trivial for finitely axiomatized theories.

2. The result does not extend smoothly to infinitely axiomatized theo-
ries other than PA.

3. In the case of PA, the proof depends essentially upon the way
CT−[PA] is formulated.

4. A natural generalization of the result can be stated and proved
in the context of ‘disentangled’ truth-theories, and its limitations
become clear there.

I’ll take these points in order. As we’ll see, they bear upon the philo-
sophical significance of Cieśliński’s result, which I have also discussed
elsewhere (Heck, 2025).

1 Finitely Axiomatized Theories

Here is a generalization of Cieśliński’s result for finitely axiomatized
theories.

Theorem 2. Let T be finitely axiomatized. Then CT−[T ] + GRfn∅ proves
GRfnT .

We assume here that T is strong enough to formalize the syntax
needed for CT−[T ]. So, in the arithmetical case, it would be enough to
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assume that T contains Q.3 But the result is not specific to arithmetical
theories. It would apply, e.g., to set theories, so long as they interpret Q.

Proof. We work in CT−[T ] + GRfn∅. Suppose T proves A. Then logic
proves

∧
T → A,4 where

∧
T is the conjunction of the finitely many

axioms of T . By GRfn∅, Tr(
∧

T → A), and the clause of CT−[T ] concerning
the conditional then yields Tr(

∧
T ) → Tr(A). But T certainly proves∧

T , and CT−[T ] will prove all T-sentences for the language of T , i.e.:
Tr(

∧
T ) ≡

∧
T . So Tr(

∧
T ) and therefore Tr(A), as wanted.

Note that all we really needed were the clause for the conditional and
the T-sentence for

∧
T .

We can do even better if we take our target to be the local reflection
principle:

RfnT BewT (A) → A

This is a schema: one instance for each sentence A. Let DT−[T ] be
the ‘disquotational’ truth-theory that extends T with just the instances
of Tr(A) ≡ A for sentences of the language of T , so without induction
extended. Then we have:

Theorem 3. Let T be finitely axiomatized. Then DT−[T ] + Rfn∅ proves
RfnT .

Proof. Fix some sentence A and reason in DT−[T ] + Rfn∅. Suppose that
A is T -provable. Then

∧
T → A is logically provable, so Tr(

∧
T → A).

But we also have the T-sentence for that sentence, so
∧

T → A. And of
course we can prove the antecedent.

What all of this suggests to me is that, despite its seeming innocence,
‘logical reflection’ is a very strong principle indeed.5 Indeed, we have:

Proposition 4. If T is consistent, then CT−[T ] does not prove GRfn∅.
3 As we’ll see below, there is some unclarity about what precisely CT−[T ] is. If it is a

theory of satisfaction, then we also need to assume that T is ‘sequential’—that it can
interpret a reasonable theory of sequences.

4 Depending upon the formalization of logic we are using, we may need more than Q
for this step. If the system has a rule of conditional proof, then it is easy to construct
the proof of

∧
T → A. Hilbert-style axiomatic systems pose more of a challenge. But

I∆0 + exp will suffice for any reasonable proof system, and I suspect that I∆0 + ω1 will
suffice for the great majority.

5 See Cieśliński’s Corollary 2 for additional reason in favor of this claim.
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Proof. Suppose that T proves GRfn∅. Then some finite fragment F of
T does so. By theorem 2, CT−[F ] therefore proves Con(F). But that is
impossible since CT−[F ] is always a conservative extension of F .

Note that proposition 4 holds for arbitrary theories T , even extremely
powerful theories like ZFC plus whatever large cardinal axioms you
would like to add. We don’t even need to assume that T is recursively
axiomatizable. The result holds even if T is true arithmetic!6 What’s
needed to prove GRfn∅ is thus not any amount of logical strength but an
extension of T ’s axioms to allow for induction on the length of proofs,
where the ‘inductive formula’ contains semantic predicates. And, as we
shall see below, the amount of induction needed for the proof of GRfn∅ is
as minimal as it could possibly be.

2 Infinitely Axiomatized Theories

The case of infinitely axiomatized theories is quite different. One’s
first thought might be to proceed as follows. If A is a theorem of some
infinitely axiomatized theory T , then, for some finite set F of axioms of
T , logic proves

∧
F → A. But. . . what? We can easily show that each

axiom of T is true, by deriving it from the axiom itself and the T-sentence
for it. We can even show that each finite collection of axioms is true. But
we have no way to show that all axioms of T are true and therefore have
no way to show that some unspecified finite collection of axioms is true.7

Cieśliński’s proof shows that this problem can be side-stepped in the
case of PA. Most of the action in the proof is in the demonstration that an
arbitrary induction axiom is true, so I will simply the proof by focusing
on that case.8 Again, for each induction axiom, we can easily show that
it is true. But here we are dealing with the induction axiom for some
formula A(x) or other, which has not been specified. So we cannot simply
appeal to the T-sentence for this axiom, since we do not know which
T-sentence that is. To put it differently: For all we know, A(x) might be
‘non-standard’; if it is, then then the T-sentence for the induction axiom
for A(x) isn’t provable in CT−[PA], since there is no such axiom.

6 It is being assumed that CT−[T ] is ‘typed’, so that the semantic notions CT−[T ] adds
are not already present in the language of T .

7 Indeed, matters are even worse, as we shall see in section 4. Note that talk of finite
sets can be formalized in PA through various coding mechanisms.

8 Cieśliński’s proof actually shows that arbitrary conjunctions of induction axioms are
true, thus avoiding a problem to be mentioned in section 4.
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Proposition 5. Let Ind(A) be the induction axiom for the formula A:

A(0) ∧ ∀x(A(x) → A(Sx)) → ∀xA(x)

Then CT−[PA] + GRfn∅ proves Ind(A).

Proof. We assume ¬Tr(Ind(A)), which by the clause for negation implies
Tr(¬Ind(A)), and attempt to reach a contradiction.

Clearly, logic proves:

¬Ind(A) → [A(0) ∧ ∀x(A(x) → A(Sx)) ∧ ∃x(¬A(x))]

Since logic is true:

Tr(¬Ind(A) → [A(0) ∧ ∀x(A(x) → A(Sx)) ∧ ∃x(¬A(x))])

We then distribute the truth-predicate across the propositional connec-
tives:

Tr(¬Ind(A)) → Tr(A(0) ∧ ∀x(A(x) → A(Sx))) ∧ Tr(∃x(¬A(x)))

But we have assumed the antecedent, so:

Tr(A(0) ∧ ∀x(A(x) → A(Sx))) ∧ Tr(∃x(¬A(x))) (1)

At this point, Cieśliński (2010b, p. 413) writes that “by the properties
of the truth-predicate” ∃n(Tr(¬A(n)). We’ll return to the question what
this means.

Now, for any n, logic proves:

A(0) ∧ ∀x(A(x) → A(Sx)) → A(n)

That is: We can show, already in PA (and, indeed, in Q), that, for each
n, we do not need to use induction to prove the displayed instance of
Ind(A). We can do so simply by instantiating the second conjunct of the
antecedent n times and using n applications of modus ponens. So, since
logic is true:

Tr(A(0) ∧ ∀x(A(x) → A(Sx)) → A(n))

And distributing again:

Tr(A(0) ∧ ∀x(A(x) → A(Sx))) → Tr(A(n))

But we had the antecedent at (1) above. So Tr(A(n)) and so ∀nTr(A(n)),
since n was arbitrary. But we also have ∃n(Tr(¬A(n)) and, by the clause
for negation, therefore ∃n¬Tr(A(n)). So that’s a contradiction.
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This proof is very specific to induction axioms.9 Consider, for example,
the theory RCl(PA) whose axioms are those of PA plus Con(PA), Con(PA +
Con(PA)), and so forth. I do not have a proof that one cannot prove in
CT−[RCl(PA)] + GRfn∅ that all axioms of RCl(PA) are true, but I do not see
how to prove that they are.10 Cieśliński’s proof relies essentially upon
the fact that each instance

A(0) ∧ ∀x(A(x) → A(Sx)) → A(n)

of the induction axiom for A(x) can be proven in pure logic. Nothing of
the sort is true for the extra axioms of RCl(PA).

The point is clearer when we consider theories formulated in lan-
guages other than the language of arithmetic. Consider, for example,
ZFC. I cannot see how even to begin to prove in CT−[ZFC] + GRfn∅ that
all of the separation and replacement axioms are true (though we can
easily enough prove that each of them is true). Nothing like Cieśliński’s
proof strategy is available here.

So PA looks like a very special case.

3 Truth and Satisfaction

And, even in that special case, the proof depends essentially upon how
CT−[PA] is formulated. As I mentioned above, one of the key moves in
the proof is from Tr(∃n(¬A(n))) to ∃n(Tr(¬A(n)), which is meant to follow
“by the properties of the truth-predicate”. Cieśliński does not tell us, in
this paper,11 exactly what CT−[PA] is, but, if this move is to be legitimate,

9 Cieśliński also does not consider induction axioms with parameters, and the proof
would not work for that case. However, if we have full induction, then parameter-free
induction is equivalent to induction with parameters (and that is provable in PA itself).
But that is not the case when considering fragments: Σn parameter-free induction is
weaker than Σn induction with parameters (Kaye et al., 1988). Thanks to Albert Visser
for consulation and the reference.

10 Below, I will show that CT−[PA] + GRfn∅ proves the ‘formalized ω rule’ for PA. If we
had the same result here, then perhaps that would do it. But the proof of that result
depends upon the fact CT−[PA] + GRfn∅ proves that all axioms of PA are true and, in
fact, that all conjunctions of axioms of PA are true.

11 Cieśliński (2010b, p. 412) denotes this theory PA-(S) and says that it “extend[s] the
language of arithmetic with a new predicate ‘T r’” and “add[s] the usual Tarski clauses
as new axioms”. So he certainly has the ‘pure’ truth theory in mind. But nothing like
(∃Eq) was part of Tarski’s theory, which involved satisfaction. In any event, Cieśliński
(2010a, p. 326) uses the same notation in another paper, and there PA-(S) is the theory
discussed in the text.
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it must be a ‘pure truth-theory’, so to speak, rather than a theory of
satisfaction. That is, the clause for the existential quantifier must be:

Tr(∃nA(n)) ≡ ∃nTr(A(n)) (∃Eq)

so that truth for quantified formulas is defined in terms of the truth of
their instances. And if that is what Cieśliński is assuming, then there is
no problem.

But, while it is technically very convenient to handle quantifiers
this way when the theory in question is formulated in the language of
arithmetic, we must remember that it is just a convenience: a technical
simplification. When our interest is in philosophical questions, especially
epistemological questions, it can obscure important facts. A statement
of the form “Every natural number is F ” does not mean that every
instance F (n) is true. The determiner “Every” has a meaning of its
own, as does the predicate “natural number”, and what “Every natural
number” means is determined by the meanings of those two expressions,
just as the meanings of “Every real number” and “Every horse” are so
determined. It is, to be sure, true that “Every natural number is F ” is
true iff F (n) is true, for all n, but that is a consequence of two more basic
facts: what “Every natural number is F ” means, which should be stated
in terms of satisfaction, and the fact that every natural number has a
numeral that names it.

The lesson is: (∃Eq) is a theorem, epistemologically speaking, not
something that should simply be built into the theory of truth. And the
proof of (∃Eq) is not trivial, even once we have proven that every number
is denoted by a numeral.12 We also need:

Lemma 6. F (x) is true when x is assigned the value n iff F (n) is true.
More generally, F (n, y⃗) is satisfied by α iff F (x, y⃗) is satisfied by the
sequence that is just like α but assigns n to x.

This ‘extensionality lemma’ is not difficult to prove, but the proof is
by induction on the complexity of F , and the induction obviously involves
semantic machinery. The extensionality lemma therefore cannot be
proven in CT−[PA], if that theory is formulated as a theory of satisfaction.

Indeed, in the presence of GRfn∅, formulating CT−[T ] as Cieśliński
does amounts to building the ‘formalized ω rule’

∀nBewT (A(n)) → ∀nA(n)
12 Denotation for terms can be defined in PA itself, and it can be proven in IΣ1 that

every number is denoted by a term.
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into the semantics. Consider, e.g., CT−[IΣ1] and, working therein, sup-
pose that (the finitely axiomatizable theory) IΣ1 proves ∀nBewIΣ1

(A(n)).
Then ∀n[Bew∅(

∧
IΣ1 → A(n))], so by logical reflection ∀nTr(

∧
IΣ1 →

A(n)). Distributing, and noting that
∧

IΣ1 is a sentence, we have:
Tr(

∧
IΣ1)) → ∀nTr(A(n). But of course the antecedent is provable, so

∀nTr(A(n). So Tr(∀nA(n)), by the clause for the universal quantifier, and
hence ∀nA(n). A similar proof works for PA since Cieśliński shows us
how to prove that arbitrary conjunctions of PA’s axioms are true. But if
we have the formalized ω rule, then it’s no surprise that we can prove
global reflection.

The same sort of point applies more obviously to the language of set
theory. While one can formulate a ‘pure truth-theory’ for that language
by extending the language with a constant for each set (Fujimoto, 2012),
that leads to collections of terms and formulas that do not form sets,
which means that even the logical axioms do not form a set. So that
approach is extremely artificial. The natural theory of truth for the
language of set theory is the one that uses satisfaction.13 Note that this
has nothing to do with the strength of the theory. It’s as true for MacLane
set theory (Zermelo set theory plus choice, with separation restricted to
∆0 formulas) as it is for ZFC.

4 A General Statement of Cieśliński’s Result

One might have thought that a proof of logical reflection should be
independent of the language: Whether logical reflection holds does not
depend upon whether we are talking about numbers or sets or graphs. In
the usual setting, however, there is no way to achieve such independence,
since the truth-theory is simply grafted onto the original language, which
is what provides for the coding of syntax. In a ‘disentangled’ setting,
however, we can achieve such independence, or at least get very close to
it.

The basic idea behind ‘disentangling’ is to separate the meta-language,
in which syntatic and semantic arguments are carried out, from the
object-language, which is the subject of those arguments. So we are
working in a many-sorted context, with one sort for the syntactic objects—

13 Dean (2015, p. 56, fn. 37) suggests that there are obstacles even to formulating a
theory of truth for the language of set theory, ones we can perhaps overcome as Fujimoto
(2012) does. But there are no such obstacles. Tarski’s original example, after all, is what
he calls the ‘calculus of classes’.
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terms and formulae—another for assignments, and a third for whatever
the object-theory concerns: numbers, sets, whatever (Heck, 2009; Leigh
and Nicolai, 2013; Heck, 2015). The meta-language might then contain
only a primitive expression for concatenation, along with primitive terms
denoting the various primitive symbols of the object-language. It is,
however, convenient to allow the meta-language to be an arithmetical
language, so that syntax is done through coding, though this language is
still meant to be distinct from the object-language, even when that is also
an arithmetical language. But the key point is that the meta-language
can be arithmetical even when the object-language is not—the latter
might be the language of set theory. The meta-theory that provides the
resources for carrying out syntactic and semantic arguments can then
also be separated from the object-theory whose consistency, say, we are
trying to prove.

So let CTDL[S] be the disentangled theory of truth for the language
L built on the meta-theory S. So CTDL[S] will contain the usual clauses
for the logical connectives, a weak theory of variable assignments, and
‘disquotational’ axioms for the non-logical expressions in L. For example,
if L is the language of set theory, then CTDL[S] will contain:

(ϵ) Satα(x ∈ y) ≡ Valα(x) ∈ Valα(y)

If S contains axiom schemata (e.g., induction axioms), then CTDL[S]
extends those by allowing semantic vocabulary into them; by contrast,
CTD−

L [S] does not extend those schemata.
This framework allows us to state some generalizations and even

strengthenings of Cieśliński’s result. Here is a first.

Theorem 7. If T is a finitely axiomatized theory in the language L, then
CTD−

L [Q] + GRfn∅ + T proves GRfnT .

What this result allows us to see is that the truth-theory needed is
even weaker than in the earlier generalization of Cieśliński’s version,
at theorem 2 (where we had CT−[T ]). The underlying syntax is given
by Q and so is about as weak as it could be. Weak though it is, however,
CTD−

L [Q] still proves all T-sentences for L (Heck, 2015, Lemma 4.2). Since
T proves

∧
T , that then allows us to prove Tr(

∧
T ), which is the key to

proving GRfnT .
When T is not finitely axiomatized, simply assuming T as object-

theory will not, in general, allow us to prove that all axioms of T are true,
even though it will allow us to prove that each of them is. Nonetheless,
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one might think we could instead prove the following (compare Heck,
2015, theorem 4.11).

Wanted Theorem. CTD−
L [Q] + GRfn∅ + Tr(T ) proves GRfnT .

Here Tr(T ) is the obvious formalization of: All of T ’s axioms are true.
Note that the mentioned theory will contain T , since each axiom of T
can be proven to be an axiom of T 14 and then derived from Tr(T ) and
the T-sentence for that axiom.

Purported Proof. Reason in the mentioned theory. Suppose T proves A.
Then some finite fragment F of T proves A. So logic proves:

∧
F → A.

So by GRfn∅, Tr(
∧

F → A). By the clause for →, Tr(
∧

F) → Tr(A). But
Tr(T ) implies Tr(

∧
F), so Tr(A).

The problem with this proof comes at the end: Exactly how does
Tr(T ) imply Tr(

∧
F)? Of course Tr(T ) implies Tr(F): All the axioms in

F are true. But that is not the same as saying that the conjunction of
the sentences in F is true. Given any specific finite set of sentences, it
is easy enough to show that, if they are all true, then their conjunction
is true. But F is not a specific set of sentences but some arbitrary finite
set, so we have no way of simply conjoining its members. What we seem
to need is something like:

(CC) If every element of the finite set F is true, then the conjunc-
tion of F ’s members is true.

The obvious proof of (CC) would be by induction on the size of the set (or
the length of the conjunction), and such an induction is not even available
in CTD−

L [PA], since the induction axioms have not been extended. What
we would need for the proof is CTDL[I∆0]. Moreover, the principle of
‘conjunctive correctness’—if every sentence in the finite set X is true,
then the conjunction of members of X is true—is surprisingly strong
(Enayat and Pakhomov, 2019): CT−[I∆0 + exp]+(CC) proves GRfnPA, so
(CC) is equivalent to GRfnPA over CT−[I∆0 + exp]. While I do not have a
proof, then, that the Wanted Theorem cannot be proven, there is some
reason to doubt that it can be.

14 We will need to requite that the formula that defines the axioms of T ‘represents’
that set in the usual technical sense. Note that there will, in fact, be many way of
representing that set and so many such formalizations. In the finite case, there is a
canonical choice: x = A1 ∨ · · · ∨ x = An. But in the infinite case, there is famously no
canonical choice (Feferman, 1960). So problems of intensionality will arise here, as they
do in the case of the second incompleteness theorem.
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If not, however, then the best we can get by way of generalizing
Cieśliński’s result would seem to be something like:

Theorem 8. CTDL[I∆0] + GRfn∅ + Tr(T ) proves GRfnT .

But GRfn∅ is just redundant here, since we already have:15

Theorem 9. CTDL[I∆0] + Tr(T ) proves GRfnT .

Moreover, if we take T to be empty, then we have:

Theorem 10. CTDL[I∆0] proves GRfn∅.

Which answers the question what is needed to prove GRfn∅.16 But
we can improve that result. The only semantic clauses needed for the
proof are those for the logical part of the language. For example, if L is
the language of set theory, then we do not need the clause (ϵ) mentioned
above. The same will be true whenever L is relational, i.e., contains no
terms other than variables. If L does contain such terms, then we will
need to know that every term has a denotation (under every assignment)
in order to justify Universal Instantiation and Existential Generalization;
but that is all we need to know for the proof of theorem 10. So, when
there are no terms that are not variables, we have a result we might
state as:

Theorem 11. CTD∅[I∆0] proves GRfn∅.

And we will have a corresponding result for languages with non-
variable terms, though we shall have to add the mentioned assumption
that every term denotes.

5 Concluding Remarks

As technically significant, and elegant, as Cieśliński’s result is, it does
not generalize. It does apply to finitely axiomatized theories, but that
hardly needed proving. But it does not seem to apply, in any sensible
way, to infinitely axiomatized theories generally. Not only is there no

15 A version of theorem 9 is implicit in Heck (2015, Theorem 4.11). What is proven there
is that CTDL[IΣ1] + Tr(T ) proves Con(T ), but the proof is just a soundness argument, so
it actually establishes GRfnT . Łełyk (2022) shows that IΣ1 can be replaced by I∆0.

16 See Heck (2025, §2.2.2) for discussion of whether ‘logical reflection’ might be justified
in some other way.
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reason to believe that we can prove, say, that all axioms of ZFC are true
in CT−[ZFC] + GRfn∅, even if we assume that all axioms of ZFC are true,
and so work in CT−[ZFC] + GRfn∅ + Tr(ZFC), there is still a significant
obstacle to proving GRfnZFC, namely, something that will do the work of
(CC). Perhaps these gaps can be filled. If not, however, then Cieśliński’s
result would seem to be of limited philosophical significance: It works
for PA, but PA is a very special case.17
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