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ABSTRACT. So-called ‘disentangled’ truth-theories are supposed to pre-
vent assumptions about the truth of statements in the object-language
from inadvertently strengthening the background syntax. In earlier
work, I proved some limitative results in an attempt to show that the
strategy works, but those results leave several questions unanswered.
We address some of them here. We also discuss a subtlety that has so
far been overlooked in discussions of these theories.

Every axiom of Peano Arithmetic is true. The rules of inference pre-
serve truth. So every theorem of PA is true. Since 0 = 1 is not true, it is
not a theorem of PA. So PA is consistent.

Such ‘soundness arguments’ play an important role in discussion of
theories of truth. Because they establish the consistency of the ‘base
theory’—PA in this case—any theory in which such an argument can
be formalized must be stronger than the base theory, by Gödel’s second
incompleteness theorem. But there are some puzzling aspects about the
way such arguments are usually formalized.

We start with some arithmetical base theory Σ; we assume that Σ is
strong enough to be able to talk about its own syntax, via Gödel num-
bering. We then expand the language by adding semantic vocabulary—a
truth-predicate and the like—and extend Σ with Tarski-style composi-
tional axioms. Those axioms will allow us to prove the ‘T-sentences’ for
the language of arithmetic

A ≡ Tr(⌜A⌝)

and so to prove that each axiom of Σ is itself true, by a trivial argument:

(1) A, since A is an axiom
(2) A ≡ Tr(⌜A⌝), since the T-sentences are provable
(3) So, Tr(⌜A⌝)

To carry out the induction that will take us from the truth of the axioms
to the truth of the theorems, we also need to extend whatever induction
axioms are present in Σ to allow semantic vocabulary to occur in those
axioms: The most natural formalization requires Σ to contain induction
for Σ1 formulas (Heck, 2015, Theorem 3.20), though it is in fact sufficient
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to have induction for ∆0 formulas (Łełyk, 2022).1 Call the result of
extending Σ in this way CT[Σ].2 Then, so long as Σ extends I∆0,3 CT[Σ]
will prove Con(Σ).

This works, but it is in some ways unsatisfying. Suppose we want in
this way to prove Con(PA). So we work in CT[PA]. Only finitely many of
PA’s axioms can be used in the proof (and PA is not finitely axiomatizable).
So Con(PA) must be provable in CT[IΣn], for some n. Moreover, there’s
a lacuna in the proof sketched earlier. It’s clear enough how CT[PA]
proves that each axiom of PA is true. But how can we prove the general
statement that all axioms of PA are true?4 The answer is: by induction.
There is, in fact, a single Σ1 formula, in the extended language, from
which all the infinitely many induction axioms of PA follow (Heck, 2015,
pp. 447–50). What this means is that CT[IΣ1] contains PA. And, as noted,
Σ1 induction is enough to carry out the induction at the heart of the
soundess argument. So, in fact, CT[IΣ1] proves Con(PA) already (Heck,
2015, Theorem 3.20), and in fact CT[I∆0] does so (Łełyk, 2022).

You might have thought that CT[IΣ1] would prove Con(IΣ1), CT[IΣ2]
would prove Con(IΣ2), and so forth, and that we’d need CT[PA] to prove
Con(PA). But no. If you try to prove Con(IΣ1) via this kind of argument,
you end up doing so in a theory already capable of proving Con(PA).
That’s what’s unsatisfying.

The reason we get this result is that the ‘base theory’ is playing two
different roles. Suppose we naïvely pursue the mentioned strategy in
an attempt to prove Con(IΣ1). So we work in CT[IΣ1]. Then, on the one
hand, IΣ1 is the theory whose consistency we are proving. In that role,
it is what allows us to prove the truth of IΣ1’s axioms, via the trivial
argument mentioned above.5 On the other hand, an extension of IΣ1 is
also the theory in which we are proving consistency: It’s what allows us
to reason about syntax and semantics. But when we extend the induction
axioms of IΣ1 qua syntax and semantics—which we need to do in order
to carry out the induction that takes us from the truth of the axioms to

1A formula is ∆0 if all quantifiers occurring in it are bounded, i.e., are of the form
∀x < t or ∃x < t; Σ1if it is of the form ∃v1 . . .∃vn(ϕ), where ϕ is ∆0; Π1, of the form
∀v1 . . .∀vn(ϕ), where ϕ is ∆0; Σn, of the form ∃v1 . . .∃vn(ϕ), where ϕ is Πn−1; Πn, of the
form ∀v1 . . .∀vn(ϕ), where ϕ is Σn−1.

2We’ll not be interested here in the weaker theory CT
−
[Σ], in which that has not been

done. As is well known, CT−
[Σ] is a conservative extension of Σ and so does not prove

Con(Σ). That does not mean, however, that CT−
[Σ] is no stronger than Σ itself. In fact,

if Σ is finitely axiomatizable, it is stronger (Heck, 2015, §3.2).
3I∆0 is Robinson arithmetic, Q,plus the induction axioms for ∆0 formulas. Similarly,

for IΣn.
4Compare: For each n, PA proves that n does not code a proof of 0 = 1. But PA does

not prove the general statement: For all n, n does not code a proof of 0 = 1, since that
just is Con(PA).

5IΣ1 is finitely axiomatizable. So, if we use some finite axiomatization, we do not have
to worry about how to get from ‘each’ to ‘all’.
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the truth of the theorems—we simultaneously give ourselves the ability
to prove the truth of much more than just the axioms of IΣ1. In fact, we
are now able to prove the truth of all the axioms of PA. The semantic
induction axioms, as it were, inadvertently strengthen the base theory
itself.

In earlier work (Heck, 2009, 2015), suggested that we might address
this problem by following Tarski (1956) and ‘disentangling’ the two roles
played by the base theory.6 We now work in a multi-sorted framework.
One sort contains numbers: the objects that our ‘target’ theory is about.7

Another sort contains syntactic objects—terms, formulas, proofs, and the
like, from the language of the target theory—and we have a syntactic
theory that allows us to reason about these objects. It might, for example,
contain axioms that allow us to carry out induction on the complexity of
expressions, or on the length of proofs. A third sort contains assignments:
functions from variables to their values. We then have a semantic theory
that relates the syntactic objects to the numbers. Officially, we might
think of the syntactic theory as formulated in a language whose sole
primitive is a symbol for concatenation: x ⌢ y, so that the theory really
is a theory of syntax.8 For convenience and familiarity, however, we may
take the syntactic theory also to be an arithmetical theory. Still, we want
to think of the syntactic language S as distinct from the language of
arithmetic, A . Perhaps it is “written in boldface, or something of the
sort” (Heck, 2015, p. 451).

Let CTD[Σ] be the semantic theory for the language of arithmetic
built on the syntactic theory Σ.9 As before, a natural formalization of
the soundness argument requries Σ1 induction, so we assume that Σ
contains IΣ1. If we want to prove the consistency of some arithmetical
theory Θ in this way, then we also need to assume that Θ’s axioms are
true. But, if we do, then we can indeed prove Con(Θ). That is:10

Theorem 1 (Heck, 2015, Theorem 4.11). CTD[IΣ1] + Tr(Θ) proves Con(Θ).
Moreover, if Θ is finitely axiomatized, then CTD[IΣ1] + Θ proves Con(Θ).
So the disentangled framework still allows us to carry out the soundness
argument.

6Leigh and Nicolai (2013) also develop this approach.
7An additional advantage of this way of proceeding is that the target theory could

also be ZF, say, without that affecting the syntactic theory in any dramatic way. The
syntax will talk about ‘ϵ’ instead of ‘0’ and ‘S’, but it will otherwise be unchanged.

8Halbach and Leigh (2024) discuss such theories at length.
9I borrow this notation from Leigh and Nicolai (2013).
10Tr(Θ) is the formalization of “All of Θ’s axioms are true”. There will be many

possible formalizations, in fact, depending upon how the set of Θ’s axioms is represented.
If Θ is finitely axiomatizable, then there is a canonical choice: x = A1 ∨ · · · ∨ x = An.
But if it is not, then there famously is no canonical choice (Feferman, 1960). So problems
of intensionality will arise here, as they do in the case of the second incompleteness
theorem.
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This result allows us to illustrate another advantage of ‘disentangling’.
The theory CT[IΣ1 + ¬Con(PA)] is inconsistent, because CT[IΣ1] proves
Con(PA) already. So we cannot, in that way, formalize a (putative) sound-
ness proof for IΣ1+¬Con(PA). But we can do so in the disentangled frame-
work: Con(IΣ1 + ¬Con(PA)) is provable in CTD[IΣ1] + (IΣ1 + ¬Con(PA)),
which is consistent—since, by Theorem 2 below, it is mutually inter-
pretable with IΣ1 + Con(IΣ1 + ¬Con(PA)). And how do we know that
IΣ1 + Con(IΣ1 + ¬Con(PA)) is consistent? Because it is true!11

Does the disentangled framework solve the problems that motivated
this framework in the first place? Heck (2015) does prove some limitative
results that are meant to address this question. For our purposes, the
most important of these is:

Theorem 2 (Heck, 2015, Corollary 4.14). CTD[IΣn] + Tr(Θ) is mutually
interpretable with IΣn + Con(Θ). Moreover, if Θ is finitely axiomatized,
then CTD[IΣn] + Θ is mutually interpretable with IΣn + Con(Θ).

This implies, in particular, that CTD[IΣ1] + IΣ1 is mutually interpretable
with IΣ1 + Con(IΣ1), which is a sub-theory not only of PA but of IΣ2. So
if you want to prove Con(IΣ2), you do have to work in a stronger theory,
namely CTD[IΣ1]+ IΣ2. The ‘semantic’ induction axioms in CTD[IΣ1] thus
do not inadvertently strengthen the object-language theory.

However, this does not, by itself, answer all the questions one might
want to ask here. One might wonder not just whether semantic induction
stengthens the target theory but also whether our assumptions about
the semantics of the target theory somehow infect the syntactic theory.
Consider, for example, CTD[IΣ1] + Tr(PA). We can, of course, reason
about the language of arithmetic in PA itself, via Gödel numbering,
and prove facts about that language in PA that we cannot prove in
IΣ1. But the semantic theory establishes a mapping from numerals
to numbers: Each numeral n denotes the corresponding number n; so
the open term “den(x)”—the denotation of the xth numeral—describes a
function that embeds the numbers in the syntactic sort, the ‘snumbers’,
into the numbers in the target sort. Might this somehow allow us to
transfer facts about the numbers in the target sort back into the syntax?
If we can prove that all numbers have some (coded) syntactic property,
and if the snumbers are provably mapped onto an initial segment of the
numbers, might that imply that the snumbers have the (coded) syntactic
property, too?

Theorem 2 does tell us that CTD[IΣ1]+Tr(PA) is mutually interpretable
with IΣ1+Con(PA). But that theory does interpret PA, by the arithmetized

11Feferman (1960, Theorem 6.6) showed that PA interprets PA + ¬Con(PA). His
proof relies upon the reflexivity of PA, but Visser (2014) has proved that IΣn interprets
IΣn + ¬Con(IΣn)—and a more general result still. In light of remarks below, IΣn will
therefore prove Con(IΣn) ≡ Con(IΣn + ¬Con(IΣn)).
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completeness theorem,12 so it isn’t clear, at this point, whether we might
be able to prove all of the purely syntactic induction axioms (as opposed
to the ones with semantic vocabulary). The worry isn’t, then, that
CTD[IΣ1]+Tr(PA) is no different from CTD[PA]+Tr(PA). It seems unlikely,
to say the least, that we’ll be able to prove all the extended induction
axioms, since our target theory has no semantic vocabulary. But the
non-extended induction axioms—that is, the induction axioms in the
purely syntactic language S —are a different matter. The question is
whether we can prove those. We can, after all, prove their analogue in
the object-theory.

As we’ll see, this worry can be addressed.
We’ll start with a relatively simple case. Suppose we could prove all

the induction axioms for S in CTD[IΣ1]+Tr(PA). Then, one might reason,
since we can also prove Con(PA), and since Con(PA) is itself sentence of
S , PA+Con(PA) would be a sub-theory of CTD[IΣ1]+Tr(PA). So it will be
enough to show that IΣ1 + Con(PA) does not interpret PA+ Con(PA). And
this is easy to show.13 Since PA is essentially reflexive, so is PA+Con(PA),
which means that PA+Con(PA) proves the consistency of every one of its
finite sub-theories. But IΣ1+Con(PA) is such a sub-theory, so PA+Con(PA)
proves Con(IΣ1+Con(PA)). Since no (consistent) theory can interpret any
theory that proves its consistency,14 it thus follows that IΣ1 + Con(PA)
does not interpret PA+ Con(PA).

In fact, however, there is a subtlety here that we have overlooked.
Volker Halbach once observed that we need to distinguish the consis-
tency statement ConS (Θ) in the syntactic language from the (coded) con-
sistency statement ConA (Θ) in the target language. What CTD[Σ] + Θ
proves is ConS (Θ). Halbach additionally observed that CTD[Σ] + Θ is
always a conservative extension of Θ, so CTD[Σ] + Θ does not prove
ConA (Θ), unless CTD[Σ] + Θ is inconsistent (Leigh and Nicolai, 2013,
§3.2; Heck, 2018, §5). So we cannot transfer results from the syntax to
the target.

Similarly, then, the statement ConS (PA) that CTD[IΣ1]+Tr(PA) proves
is a statement about the arithmetical version of PA. So it is really
ConS (PAA ) that CTD[IΣ1]+Tr(PA) proves, not ConS (PAS ),which asserts
the consistency of the syntactic version of PA. Now, on reflection, this does
not affect the argument two paragraphs back: That depended only upon
the fact that ConS (PAA ) belongs to the language S . But it does raise the
question whether ConS (PAS ) can also be proven. This might seem trivial
and unimportant. But we’ll need to know below that CTD[IΣ1] + Tr(PA)

12Indeed, Q+ Con(T ) always interprets T .
13Thanks to Carlo Nicolai for this observation.
14In fact, something stronger is true: Even if Θ only proves Con(Σ) on a cut, Σ cannot

interpret Θ. See Heck (2015, §2.5) for a proof of this folklorish result, which is implicit
in Pudlák (1985).



A NOTE ON THE STRENGTH OF DISENTANGLED TRUTH-THEORIES 6

proves ConS (PAS ), and the issue is more obviously important, and not
at all trivial, if we take our syntactic theory to be, as it ideally should be,
a theory of concatenation. Then ConS (PAS ) does not even make sense,
since PA is not a theory of concatenation. Similar issues arise when the
object-language is, say, the langauge of set-theory. CTD[IΣ1] + Tr(ZF) is
mutually interpretable with IΣ1 + Con(ZF). It may not be immediately
obvious whether this theory proves ConS (PAS ).

However, PAS and PAA are (trivially) mutually interpretable. And
IΣ1 is strong enough both (i) to show that PAS is interpretable in PAA

and (ii) to prove that interpretability implies relative consistency, i.e.,
to prove that ConS (PAA ) implies ConS (PAS ). So CTD[IΣ1] +Tr(PA) does
prove ConS (PAS ), as wanted. This does not depend upon the triviality of
the interpretation. Generally speaking, IΣ1 is strong enough to establish
the existence of interpretations, where they exist, since this is just a
matter of the existence of certain proofs.15 So CTD[IΣ1] + Tr(ZF) does
prove ConS (PAS ), by showing that PAS is interpretable in ZF and so
that Con(ZF) implies ConS (PAS ). Similar results will be available when
the syntax is the syntactic analogue of IΣ1:16 Such a theory will be
strong enough both to establish results about interpretability and to
show that interpretability implies relative consistency. The argument
that IΣ1 + Con(PA) does not interpret PA+ Con(PA) will thus generalize
in the right way.

We now turn to the question whether even the Σ2 induction axioms for
S are provable in CTD[IΣ1]+Tr(PA) (that is, whether IΣS

2 is a sub-theory
thereof). We shall prove something stronger and more general:

Theorem 3. CTD[IΣS
n ] + IΣA

n+1 does not contain IΣS
n+1 as a sub-theory

(for n > 0).

The beginning of the argument is the same as before. Suppose other-
wise. Then, since CTD[IΣS

n ] + IΣA
n+1 proves ConS (IΣA

n+1), it also proves
ConS (IΣS

n+1), so it contains IΣS
n+1 + ConS (IΣS

n+1) as a sub-theory. Since
CTD[IΣS

n ]+ IΣA
n+1 is mutually interpretable with IΣn+Con(IΣn+1), it will

suffice to establish:

15When the interpreted theory is not finitely axiomatizable, this becomes a bit more
subtle, and may depend upon how the set of axioms is described, as Feferman (1960)
famously shows. I’ll ignore such subtleties here.

16It’s most natural to take ‘bounded’ in a theory of concatentation to be defined in
terms of substrings, as Halbach and Leigh (2024, §8.4) do. We can then define Σn, etc,
in the usual way, and show that the syntactic theory with Σn induction is mutually
interpretable with IΣn. This is because the most natural interpretation of arithmetic
in syntax interprets numbers by strings like |, ∥, etc, and the usual coding of syntax in
arithmetic has it that, if a is a substring of b, then the code of a is less than the code of b.
(This is the much discussed ‘monotonicity’ of the usual codings (Heck, 2007; Halbach
and Visser, 2014a,b; Grabmayr and Visser, 2021).)
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Lemma 4. IΣn+1 + Con(IΣn+1) is not interpretable in IΣn + Con(IΣn+1).

This is true despite the fact that IΣn + Con(IΣn+1) does interpret IΣn+1

itself, by the arithmetized completeness theorem. So, in a sense, this is
best possible.

For the proof, we need the following important fact:

Theorem 5 (Hájek and Pudlák, 1993, p. 106, Theorem 4.33). IΣn proves
that the theory whose (arithmetical) axioms are the true Πn+1 sentences is
consistent.

Here, the true Πn+1 sentences are characterized using a ‘partial’ truth-
predicate for Πn+1 sentences: a formula TrΠn+1

(x) such that, if A is (no
more complex than) Πn+1, IΣn (in fact, IΣ1) proves A ≡ TrΠn+1

(⌜A⌝).17

Theorem 5 is what allows us to show that IΣn+1 proves Con(IΣn), the
reason being that IΣn has a finite Πn+2 axiomatization.18 And IΣn+1 will
prove that all of those axioms are true by the sort of trivial argument
given above: Let A be one of the axioms; then A (since IΣn is a sub-theory
of IΣn+1); but also A ≡ TrΠn+1

(⌜A⌝); so TrΠn+1
(⌜A⌝). So IΣn+1 proves that

IΣn is a sub-theory of Tr(Πn+2). But even Q knows that a sub-theory of a
consistent theory is consistent. So IΣn+1 proves that IΣn is consistent if
Tr(Πn+2) is and so proves that IΣn is consistent.

The proof of Lemma 4 just extends this argument.

Proof of Lemma 4. Con(IΣn+1) is a Π1 sentence, and IΣn+1 + Con(IΣn+1)
proves that it is a true one, by the trivial argument. So IΣn + Con(IΣn+1)
also has a Πn+2 axiomatization, and IΣn + Con(IΣn+1) proves that all
those axioms are true. So, by the same reasoning just rehearsed, IΣn+1 +
Con(IΣn+1) proves Con(IΣn + Con(IΣn+1)). So IΣn + Con(IΣn+1) is not
interpretable in IΣn+1 + Con(IΣn+1).19 □

So that completes the proof of Theorem 3.
It’s important to note that the theory mentioned in Theorem 5 is the

one containing as axioms those Πn+1 sentences that IΣn thinks are true,
not necessarily the ones that actually are true—though, since IΣn is
sound, the sentences it thinks are true really are true.20 To put it more

17For the details, see Hájek and Pudlák (1993, pp. 50–61).
18This is because the usual, non-finite axiomatization is Πn+2—just check the com-

plexity of the induction axioms—and the finitely many axioms can be chosen from among
the usual axioms (Hájek and Pudlák, 1993, p. 78, Theorem 2.52). (In my courses on
these matters, I often assign the following exercise: If some infinitely axiomatized theory
T has a finite axiomatization, then it has a finite axiomatization all of whose axioms are
among those of T .)

19This is really a special case of Hajék and Pudlák’s Corollary 4.34(ii). But it is worth
filling in some of the details they omit.

20Moreover, in the standard model, the extension of TrΠn
(x) is exactly the set of true

Πn sentences.
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formally, what Theorem 5 says is that IΣn proves: There is no sequence of
formulas, ending with 0 = 1, each of which is either a true Πn+2 sentence
or a logical axiom or else follows from earlier members of the sequence
by one of the rules of inference. The proof of Lemma 4 depends upon the
fact that IΣn+1 +Con(IΣn+1) proves that IΣn +Con(IΣn+1) is a sub-theory
of the theory whose axioms are the true Πn+2 sentences. It is irrelevant
whether that claim is itself true.

This allows us to establish a generalization of Lemma 4 that is worth
stating separately:
Corollary 6. Let A be a Πn+2 sentence that is consistent with IΣn. Then
IΣn+1 +A is not interpretable in IΣn +A .
Proof. IΣn + A is Πn+2 axiomatized, and IΣn+1 + A proves that all its
axioms are true. So IΣn+1 +A proves Con(IΣn+1 +A). □

We can be confident, then, that ‘disentangling’ does what it is supposed
to do: Not only do the semantic induction axioms not inadvertently
strengthen the target theory, but assuming the truth of the induction
axioms in the target theory does not ‘transfer’ back into the syntactic
theory, either. That, however, seems about as much as we are likely
to be able to say: CTD[IΣn] + IΣn is not a conservative extension of
IΣn, or even of CTD[IΣn], not even for Π1 sentences: The whole point is
that CTD[IΣn]+ IΣn proves the purely syntactic Π1 sentence ConS (IΣn+1),
which is not provable in IΣn itself (unless, of course, IΣn is inconsistent).21
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